
The Colourful Tverberg Theorem

with Equal Coefficients



Tverberg

Any (k − 1)(d + 1) + 1 points in Rd can be partitioned into k classes

whose convex hulls intersect.

Once the partition is chosen the intersection is (generically) a single

point.

If d = 2 and k = 3 we have 7 points: two triangles and a point or two

lines and a triangle.



Bárány and Larman conjectured a colourful version:

Any d+ 1 colour classes of k points can be partitioned into k rainbow

simplices that intersect.

In this case the intersection is not a single point.



(Conjecture) Any d + 1 colour classes of k points can be partitioned

into k rainbow simplices that intersect.

Vrećica and Zivaljević proved that if each colour class contains 2k−1

points and k is prime then we can find k disjoint rainbow sets that

intersect.

The restriction on k comes from the use of topological methods.



Blagojević, Matschke and Ziegler made a breakthrough on the op-

timal case: in which each colour class has k points.

Their proof is topological and requires that k + 1 be prime.

The key first step is to introduce an additional point, in a colour class

of its own, so that we now have the Tverberg number k(d+1)+1 and

find a family of k + 1 intersecting rainbow sets.

This makes the intersection a single point.



The problem in all these cases is to show that a certain linear pro-

gramme is feasible. The difficulty lies in finding a partition which

creates a feasible linear programme.

The original proof of Tverberg’s Theorem was complicated.

The standard proof today depends upon the Colourful Caratheodory

Theorem of Bárány and an idea of Sarkaria.

Bárány If each of d + 1 colour classes of points in Rd contains the

origin in its convex hull then there is a rainbow simplex containing the

origin.



Bárány If each of d + 1 colour classes of points in Rd contains the

origin in its convex hull then there is a rainbow simplex containing the

origin.

Proof Assume there is no such simplex. Choose the rainbow simplex

to which the origin is closest.

Let x be the closest point: there is a colour not used to make the

facet to which x belongs. Choose a point of that colour whose inner

product with x is negative.

Swap.



Proof of Tverberg We are given (k−1)(d+ 1) + 1 points in Rd. Call

them (zj). For each one form a new point wj in Rd+1 as (zj,1).

Let u1, u2, . . . , uk be the vertices of a regular simplex in Rk−1. Observe

that ∑
λiui = 0

if and only if the λi are equal.

Now for each j form a colour class of k points in R(k−1)(d+1) of the

form ui ⊗ wj.



We have n = (k − 1)(d + 1) + 1 colour classes in R(k−1)(d+1) each of

which is u1 ⊗ w, . . . , uk ⊗ w so its convex hull contains 0.

So there is a colourful set of (k − 1)(d+ 1) + 1 points with

n∑
j=1

λju∗ ⊗ wj = 0.

Put wj into Ai if ∗ = i.

We have positive combinations ∑
wj∈Ai

λjwj

that are all equal.



We have positive combinations ∑
wj∈Ai

λjwj

that are all equal.

The total weight of λ is the same for each i because of the 1 that we

appended.

So, after scaling, we have convex combinations of the wj in each class

that are equal.



Lovász Any d+1 pairs of points can be partitioned into two intersecting

rainbow simplices.

Proof Let the pairs be (xi, yi) for 1 ≤ i ≤ d + 1. The d + 1 vectors

xi − yi are linearly dependent.

So
∑
αi(xi − yi) = 0 and by switching the pairs as necessary we can

assume that all the αi are positive and their sum is 1.

Then ∑
αixi =

∑
αiyi

is a solution.



The theorem of Lovász solves the original coloured Tverberg for k = 2

in a strong way: the convex combinations that we find have equal

coefficients in the sense that for each colour class, its weight is the

same in both combinations.

The proof is similar to the Sarkaria trick but you don’t see it because

the ui in 1 dimension are just the numbers 1 and −1.

Based on this, Pablo Soberón asked whether there might be an equal

coefficient version of Colourful Tverberg for k-partitions.



Soberón Given n = (k − 1)d + 1 colour classes of k points, there is

partition into k rainbow sets whose convex hulls intersect with equal

coefficients.

The number of colour classes is optimal for the equal coefficient prob-

lem.

The proof uses the Sarkaria trick but in a completely different way.

We apply Colourful Caratheodory to colour classes of sums.



We have n = (k − 1)d+ 1 colour classes of k points.

For each j between 1 and n we form a new class of points in R(k−1)d

k∑
1

ui ⊗ zjσ(i)

where zj1, zj2, . . . , zjk are the points in the jth original class and σ is a

permutation.

So we look at all matrices that we can build by assigning one of the

zj. to each ui and adding up.

The new class contains the origin in its convex hull because the sum

of its points is zero.



For each j between 1 and n we form a new class of points in R(k−1)d

k∑
1

ui ⊗ zjσ(i)

where zj1, zj2, . . . , zjk are points in the jth original class and σ is a

permutation.

Now we apply Colourful Caratheodory to find a rainbow set whose

convex hull contains the origin.

So we have convex weights αj with

n∑
j=1

αj
∑
i

ui ⊗ zjσj(i) = 0.



Then the vectors
n∑

j=1

αjzjσj(i)

are the same point, w say, for all i.

The ith set in the partition is the rainbow set z1σ1(i), . . . , znσn(i).

Their convex hulls each contain the point w (and with equal coeffi-

cients).



The general case of the original problem (without the restriction on

primality) is still open.

(Conjecture) Any d + 1 colour classes of k points can be partitioned

into k rainbow simplices that intersect.

There is something wrong with our inability to prove this using an

analytic/geometric argument. Topological methods are powerful: but

the primality can’t possibly be essential, can it?

In some ways this conjecture is the most natural problem of its type.



On the other hand perhaps we do need topology. Look at the case

d = 1.

We have k red points on the line and k blue ones. We want to marry

them so that each couple straddles a fixed point p.

Choose p so that there are k points on either side. Then the number

of red points on the left is equal to the number of blue points on the

right.

This is a topological argument.



Or is it?

Choose p to minimise ∑
|xi − p|.


