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Theorem (Extended Colorful Carathéodory). Let A1, . . . , Ad be nonempty
sets in Rd. Suppose that for any pair of distinct indices i, j we have 0 ∈
conv(Ai ∪ Aj). Then there exist ai ∈ Ai, i = 1, . . . , d + 1, such that 0 ∈
conv{a1, . . . , ad+1}.

Clearly, this is an extension of Colorful Carathéodory’s Theorem, since
the condition 0 ∈

⋂d+1
i=1 convAi implies the above assumption.

Remark. This theorem does not have a conic analog (but it has some conse-
quences for the spherical colorful version of Helly’s Theorem. However, we
will not explain them here).

Proof. We start as in the proof of Colorful Carathéodory’s Theorem. With-
out loss of generality we may assume that all the sets Ai are finite. Choose
ai ∈ Ai, i = 1, . . . , d + 1, so that the distance dist(0, conv{a1, . . . , ad+1}) is
minimal.

If dist(0, conv{a1, . . . , ad+1}) = 0 then we are done, so suppose further
that dist(0, conv{a1, . . . , ad+1}) = ‖z‖ > 0 (for some z ∈ conv{a1, . . . , ad+1}).
We may assume that the points a1, . . . , ad+1 are in general position and that
z lies in the interior of the facet conv{a1, . . . , ad}.

Denote H = aff{a1, . . . , ad}. Because of the optimality of z the set Ad+1

(and in particular the point ad+1) has to lie “above” H (see Figure 1). Con-
sequently, because of the condition 0 ∈ conv(Ai ∪ Ad+1), there exist points
b1 ∈ A1, . . . , bd ∈ Ad, which lie “below” H.

For i = 1, . . . , d we define f(ei) = ai, f(−ei) = bi. Then we extend f to
the mapping f : ∂ conv{±e1, . . . ,±ed} → Rd simply by setting f to be affine
on the facets.

Note that the facets of ∂ conv{±e1, . . . ,±ed} are mapped exactly to mul-
ticolor facets. The image of f divides Rd into components, of which one
is unbounded (we use topology here!). From the optimality of z we have
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Figure 1: The point ad+1 lies “above” H.

[0, z) ∩ Im f = ∅. Therefore 0 lies in a bounded component of Rd \ Im f
(since the image of f lies “below” H and contains z). On the other hand the
point ad+1 lies in the unbounded component of Rd\Im f , since it lies “above”
H. Therefore the half-ray starting from ad+1 (in the unbounded component)
after passing through 0 (in a bounded component) has to pierce a multicolor
facet conv{c1, . . . , cd}, for some ci ∈ {ai, bi} (see Figure 2).

ad+1

c1

c2

cd

0

H

Figure 2: The half-ray starting at ad+1 pierces a multicolor facet.
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The simplex conv{c1, . . . , cd, ad+1} is better than the originally chosen
simplex conv{a1, . . . , ad+1} (note that we cannot have ci = ai for all i =
1, . . . , d since our half-ray goes first through H, then passes through 0 and
only then pierces the facet conv{c1, . . . , cd}). This contradiction with the
assumption dist(0, conv{a1, . . . , ad+1}) > 0 and ends the proof.

Remark (homework). Let Γ be a curve in Rd (a continuous image of the
interval [0, 1]). Then every point in conv Γ can be written as a convex combi-
nation of only d points from Γ (this is one point less than in Carathéodory’s
Theorem, but our set is of a special form).

We will give now a second proof of Tverberg’s Theorem.

Sarkaria’s proof of Tverberg’s Theorem. Let X := {x0, x1, . . . , xn} ⊂ Rd,
where n = (r − 1)(d + 1). We want to prove that there exists a partition
X = X1 ∪ . . . ∪Xr such that

⋂r
i=1 convXi 6= ∅.

We will use an “artificial” tool. Namely, let v1, . . . , vr be vectors in Rr−1

such that every (r−1)-tuple of them is linearly independent and v1+. . .+vr =
0. For any i = 0, . . . n we define the set

Ai :=

{
vj ⊗

(
xi
1

)
: j = 1, . . . , r

}
⊂ Rn.

Since 0 =
∑r

i=1
1
r
vi, the origin belongs to

⋂n
i=0 convAi. By Colorful Cara-

théodory’s Theorem there exist ai ∈ Ai such that 0 ∈ conv{a0, . . . , an}.
Hence there exist weights αi > 0,

∑n
i=0 αi = 1, such that

0 =
n∑

i=0

αiai =
n∑

i=0

αivj(i) ⊗
(
xi
1

)
. (1)

Let Ij := {i ∈ {0, . . . , n} : j(i) = j}. These sets are a partition of {0, . . . , n}
and thus the sets Xj := {xi : i ∈ Ij} are a partition of X. We will find a
common point to all the sets convXi, which will end the proof.

Note that for any distinct k, l ∈ {1, . . . r} there exists u ∈ Rr−1 such that
u · vk = 1, u · vl = −1 and u · vi = 0 for all other i. We multiply the equation
(1) by u from the left side (in the sense of scalar product of vectors in Rr−1)
and get

0 =
∑
i∈Ik

αi

(
xi
1

)
−
∑
i∈Il

αi

(
xi
1

)
.

In particular
∑

i∈Ik αi =
∑

i∈Il αi for every pair of k, l. Thus the sum
∑

i∈Ik αi

does not depend on k and since the sum of all αi is 1, all the sums
∑

i∈Ik αi

are equal to 1
r
.
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Similarly we get that
∑

i∈Ik αixi does not depend on k. Denote this sum
by z. Then

rz =
∑
i∈I1

(rαi)xi =
∑
i∈I2

(rαi)xi = . . . =
∑
i∈Ir

(rαi)xi,

which (together with
∑

i∈Ik(rαi) = 1) means that rz ∈ convXi for all i =
1, . . . , r.

Remark. We can prove Tverberg’s Theorem in a different way. We will give
only the main idea of the third proof: take n + 1 points in Rd (n is as in
the above proof), build a simplex in Rd+1 by lifting the given points through
fibres of an affine projection. Then it is enough to prove that there exist r
disjoint faces of this simplex such that their images under this projection on
Rd have a common point.

Remark. The question what happens if we use a continuous map (rather
than an affine one) in the formulation of Tverberg’s Theorem described in
the previous Remark was long open. It is now known that the version with
the continuous maps is true for r = pk, where p is a prime number (in the
proof actions of groups are used).

The second proof of Tverberg’s Theorem is actually a copycat of the proof
of Radon’s Theorem from the first lecture. We can formulate this method,
invented by Sarkaria, as an easy lemma:

Lemma (Sarkaria). Assume X is a finite set in Rd and X = X1 ∪ . . . ∪Xr

is its partition. Let n = (r − 1)(d + 1). With every x ∈ X, if x ∈ Xj, we
associate a vector x̄ := vj ⊗

(
x
1

)
∈ Rn, where (vi)

r
i=1 is a sequence introduced

in the previous proof. By X̄ be denote a set of all x̄. Then
⋂r

j=1 convXj = ∅
if and only if 0 /∈ conv X̄.

Remark. In Sarkaria’s Lemma we can skip the assumption that Xi are pair-
wise disjoint. Then we have to consider multiset X.

Remark. This gives an “interior” condition equivalent to
⋂r

j=1 convXj = ∅
(which means that X is “separated along the colors” 1, . . . , r). Note that
we found an “exterior” condition before, in two lemmas from the Tuesday
lecture.

Proof of Sarkaria’s Lemma. We will show that
⋂r

j=1 convXj 6= ∅ if and only

if 0 ∈ conv X̄. We will proceed in the same way as in the second proof of
Tverberg’s Theorem.
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Assume first that 0 ∈ conv X̄. Thus there exist weights α(x) such that

0 =
∑
x∈X

α(x)x̄ =
∑
x∈X

α(x)vj(x) ⊗
(
x
1

)
=

r∑
j=1

vj ⊗

∑
x∈Xj

α(x)

(
x
1

) .

Take u such that uvk = 1, uvl = −1 and uvi = 0 for all other i. We multiply
the equation by u and get, as in the previous proof, that both

∑
x∈Xk

α(x)
and z :=

∑
x∈Xk

α(x)x do not depend on k. Thus rz is a convex combination
of points of Xk for all k = 1, . . . , r, which ends the proof of this implication.

Assume now that z ∈
⋂r

j=1 convXj. Then there exist nonegative weights
α(x) such that

z =
∑
x∈X1

α(x)x = . . . =
∑
x∈Xr

α(x)x,

thus

0 = 0⊗
(
z
1

)
= (v1+. . .+vr)⊗

(
z
1

)
=

r∑
j=1

vj⊗

∑
x∈Xj

α(x)

(
x
1

) =
∑
x∈X

α(x)x̄,

which means (since α(x) are nonegative), that 0 ∈ conv X̄ and proves the
second implication.

We will also use Sarkaria’s Lemma to prove another theorem:

Theorem (Kirchberger). Assume X = X1 ∪ . . . ∪Xr ⊂ Rd is a partition of
a finite set X. Then X is separated along the colors (i.e.

⋂r
j=1 convXj = ∅)

if and only if all Y ⊂ X of cardinality at most (r−1)(d+1)+1 are separated
along the colors (i.e.

⋂r
j=1 conv(Y ∩Xj) = ∅).

This theorem will follow by a more general fact. Consider a partition of
X ⊂ Rd as above and let n = (r − 1)(d+ 1). Let Xi,0, . . . , Xi,n be such that
for any i = 1, . . . r we have

Xi =
n⋃

k=0

Xi,k.

For j = 0, . . . n we introduce sets

Gj :=
r⋃

l=1

Xl,j,

which we will call groups.
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We call a set Y = {y0, . . . , yn} a transversal, if yj ∈ Gj for j = 0, . . . , n.
We say that a group Gj is separated along the colors if

⋂r
i=1 convXi,j = ∅.

Kirchberger’s Theorem is a special case of the following one (to recover
it we have to set Xi,j := Xi).

Theorem. Under above notation and conditions, if every transversal is sep-
arated along the colors then there exists a group separated along the colors.

Proof. By Sarkaria’s Lemma if a transversal Y is separated along the colors
then 0 /∈ conv Ȳ , where in the construction of Ȳ we use a partition of Y
induced by the partition X1, . . . , Xr of X, namely Y = (Y ∩X1)∩ . . .∩ (Y ∩
Xr).

On the other hand, if every group Gj was not separated along the colors,
the origin would belong to all the sets conv Ḡj, where again in the construc-
tion of Ḡj we use the partition given by the partition X1, . . . Xr of X. Then,
by Colorful Carathéodory’s Theorem, there would exist a transversal Y , such
that conv Ȳ would contain the origin, which would be a contradiction.

We will consider now another problem: by how many simplices can a
single point be covered? The following theorem gives an exact answer in the
case of the plane.

Theorem (Boros-Füredi). Assume X ⊂ R2 is a set of n points. Then there
exists a point covered by

(
n
3

)
(2
9
− o(1)) triangles with vertices in X.

Remark. We will prove later that the constant 2
9

is optimal.

Proof. Consider a “nice” finite measure on the plane R2, say absolutely con-
tinuous with respect to the Lebesgue measure with a positive continuous
density. By M we denote the measure of the plane.

Fix any direction v ∈ S1. Note that there exists a line l = l(v) in this
direction dividing the plane into two half-planes H1 = H1(v) and H2 = H2(v)
of the same measure. We assume that H1 is ‘on the left-hand side’ of v (see
Figure 3). Then fix any point x on this line. It divides the line l into two
half-lines l1 and l2 (assume that l1 goes in the direction of v and l2 in the
direction of −v). Note that there exist two half-lines k1 ⊂ H1 and k2 ⊂ H2

originating at x, such that the sector between l1 and k1 has measure M
6

and
so does the sector between l2 and k2. When we move the point x along l
from ‘−∞‘ to ‘∞‘, the angle between k1 and k2 changes continuously from 0
to 2π and hence there exists a point x = x(v), such that these two half-lines
form a line (see Figure 3).

Moreover there exist two lines m1 ⊂ H1 and m2 ⊂ H2 originating at
x such that the sector between k1 and m1 is of measure M

6
and so is the
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Figure 3: We move x so that k1 and k2 form a line.

sector between k2 and m2 (see Figure 4). Let α = α(v) be the angle between
m1 and m2. Note that this angle is a continuous function of v ∈ S1 (we
do not assume this angle belongs to [0, 2π)). Moreover H1(v) = H2(−v),
l1(v) = l2(−v), m1(v) = m2(−v), etc. and thus α(v) = −α(−v) (mod 2π),
hence there exists a direction v0 such that α(v0) = π (mod 2π), which means
that m1(v0) and m2(v0) are collinear (see Figure 4).

vx

l1

l2

k1

k2

m1

m2

Figure 4: We rotate v so that m1 and m2 form a line.

We have constructed three lines with a common point, dividing the plane
into three sectors each of measure M

6
. If we considered a counting measure

(which is not absolutely continuous) on the set X, we could find (if n = |X| is
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large) three lines with a common point dividing the plane into three sectors
each containing almost n

6
points of X. We skip this technical argument.

We will now prove that the point z common to these three lines is covered
by at least

(
n
3

)
(2
9
− o(1)) ≈ n3

27
− o(n3) triangles. Note that if we pick three

points, each from a different sector in such a way, that any two points do
not lie in neighbouring sectors, we get vertices of a triangle covering z (see
Figure 5). We can pick these points in ≈ 2(n

6
)3 ways.

z z

Figure 5: Triangles covering z.

Moreover, if we choose two nonneighbouring groups of neighbouring sec-
tors and pick a point from each of them, we get vertices of possible four
triangles of which at least two cover point the z (see Figure 5). We can pick
these triangles in ≈ 3 · 2 · (n

6
)4 · 1

n
6

ways (we divide by n
6

because we count

every triangle n
6

times). This gives us a total number of triangles covering z

approximately equal to at least n3

27
.

Theorem. For any d ≥ 2 there exists a positive constant c(d) with the fol-
lowing property: for any set X ⊂ Rd of n points in general position there is
a point in at least c(d)

(
n

d+1

)
simplices with vertices in X.

First proof. Let r be the largest possible number such that n = (r − 1)(d +
1) + k for some k ≥ 1. Then X has a Tverberg partition into r pieces, i.e.
X = X1 ∪ . . . ∪Xr and there exists a point z ∈

⋂r
i=1 convXi.

By Colorful Carathédory’s Theorem for any 1 ≤ i1 ≤ . . . ≤ id+1 ≤ r there
exist xi1 ∈ Xi1 , . . . , xid+1

∈ Xid+1
such that z ∈ conv{xi1 , . . . , xid+1

}.
Clearly the simplices conv{xi1 , . . . , xid+1

} are pairwise distinct for differ-
ent choices of the indices 1 ≤ i1 ≤ . . . ≤ id+1 ≤ r. Therefore the point z is
covered by at least(

r + d

d+ 1

)
=

(n−k
d+1

+ 1 + d

d+ 1

)
≥
( n

d+1

d+ 1

)
≥ 1

(d+ 1)d+1

(
n

d+ 1

)
different simplices with vertices from X.
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Remark. We proved the theorem with c(d) = (d+ 1)−d−1. We could improve
this constant slightly by using the stronger version of Colorful Carathéodory’s
Theorem, where one point is fixed.

Second proof. Let

F = {convS : S ⊂ X, |S| = d+ 1}.

Clearly |F| =
(

n
d+1

)
. We want to show that “many” of the elements of F

have a nonempty intersection. We will use Fractional Helly’s Theorem for
this purpose. It is enough to show that a positive fraction of all(( n

d+1

)
d+ 1

)
(d + 1)-tuples of elements from F (or in other words, a positive fraction of
all (d+ 1)-tuples of convex hulls of d+ 1 elements from X) has a nonempty
intersection.

Suppose we have a subset Y ⊂ X, |Y | = (d + 1)2. Any d2 + d + 1 =
((d+ 1)− 1)(d+ 1) + 1 points from Y have a Tverberg’s partition, i.e. they
can be splited into mutually disjoint Y1, . . . , Yd+1 such that

⋂d+1
i=1 conv Yi 6= ∅.

By Carathédory’s Theorem we may assume that each of the sets Yi has no
more than d + 1 elements. Then we distribute the points from Y \

⋃d+1
i=1 Yi

among the sets Yi so that each of the d + 1 resulting sets Ỹi has exactly
d+ 1 elements. Summing up, we obtain a partition Y =

⋃d+1
i=1 Ỹi, |Ỹi| = d+1,⋂d+1

i=1 conv Ỹi 6= ∅.
There are

(
n

(d+1)2

)
possible choices of the subset Y , each resulting in a

different (d + 1)-tuple of d + 1 elements from X such that the convex hulls
of those elements intersect.

Since (
n

(d+ 1)2

)
≥ c(d)

(( n
d+1

)
d+ 1

)
for some positive c(d) (both sides of the above inequality are polynomials
of the variable n, each of degree (d + 1)2), we can use Fractional Helly’s
Theorem and the assertion of the theorem follows.

Remark. The constant form the first proof has not been improved for a long
time. One can get a better constant considering a lifting of X into Rn.
Gromov has shown that getting back we can find a point covered many
times. His proof uses topology and gives the constant ed

dd
. It is still an open

question if this is best possible.
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We will end this lecture with a proof that the leading term n3

27
in the

Boros-Füredi Theorem is optimal. Our example will be the stretched grid.
The n × n stretched grid consists of n2 points in the plane. They form

n parallel rows (n points in each), in each row the distance between two
neighbouring points is one, and the points are aligned so that they also form
n parallel columns. The difference between the stretched grid and a normal
n × n grid is the spacing between rows. The second row lies above the first
(bottom) row, in distance 1 from it (no difference so far). The third row
lies above the second row, on such a height that the segment connecting the
rightmost point from the first row and the leftmost point from the third row
passes between the two rightmost points in the second row (so the third row
has to be in distance strictly greater than n − 1 from the bottom row; it is
convenient to think of it as lying in distance n from the bottom row). This
construcion is continued: the j-th row lies in such a distance above the first
row, that the segment connecting the rightmost point from the first row and
the leftmost point from the j-th row passes between the two rightmost points
in the (j−1)-th row (see Figure 6 for an example of the 4×4 stretched grid).

Figure 6: The 4× 4 stretched grid (stretched on the left, compressed on the
right).

We will be interested in the following question: how many points from
the stretched grid lie in the interior of a triangle with vertices from stretched
grid? The answer to this question will not change if we identify the n × n
stretched grid with a normal n × n grid and the segments connecting two
points with two perpendicular segments: we first go vertically from the lower
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of the two points to the height of the higher of these points and then right
or left to the second point (see Figure 6; more examples of segments and
triangles are depicted in Figure 7).

Figure 7: Segments and triangles.

We can now proceed to the proof of the optimality of the Boros-Füredi
Theorem.

Proof of the optimality of the Boros-Füredi Theorem. Recall that the theo-
rem states that for every set X ⊂ R2, |X| = n, there exists a point covered
by
(
n
3

)
(2
9
− o(1)) triangles with vertices in X. We need to show that (for

every n ∈ N) there exists a set X ⊂ R2, |X| = n, such that every point in
the plane is covered by at most

(
n
3

)
(2
9

+ o(1)) triangles with vertices in X.

n1 n2 n3

Figure 8: The points on the diagonal are divided into three groups.

Let X be the set of points from diagonal of the n×n stretched grid (going
from the bottom left-hand side corner to the top right-hand side corner). Us-
ing the above explications we can identify X with the set {(1, 1), . . . , (n, n)}
of R2. If a point (x, y) ∈ R2 is covered by some triangles with vertices in
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X, then we must have 1 ≤ x ≤ y ≤ n. A horizontal and a vertical line
through the point (x, y) divide the points in the set X into three groups, of
cardinality n1, n2, n3 respectively (see Figure 8).

Notice that if a triangle with vertices from X coveres the point (x, y) then
each of its vertices comes from a different group (and the covering triangle
looks like the bottom right-hand side triangle in Figure 7). Therefore the
point (x, y) is covered by at most

n1n2n3 ≤
(
n1 + n2 + n3

3

)3

≤ (n+ 2)3

27
=
n3

27
+ o(n3)

triangles with vertices from the set X.

Remark. A similar example can be constructed also in higher dimensions.
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