Stability and separation in volume comparison problems.

Alexander Koldobsky

University of Missouri-Columbia
A typical comparison problem for the volume of convex bodies asks whether inequalities
\[f_K(\xi) \leq f_L(\xi), \quad \forall \xi \in S^{n-1} \]
imply
\[|K| \leq |L| \]
for any \(K, L \) from a certain class of origin-symmetric convex bodies in \(\mathbb{IR}^n \), where \(f_K \) is a geometric characteristic of \(K \) and \(|K| \) is volume of proper dimension.
A typical comparison problem for the volume of convex bodies asks whether inequalities
\[f_K(\xi) \leq f_L(\xi), \quad \forall \xi \in S^{n-1} \]

imply
\[|K| \leq |L| \]

for any \(K, L \) from a certain class of origin-symmetric convex bodies in \(\mathbb{R}^n \), where \(f_K \) is a geometric characteristic of \(K \) and \(|K| \) is volume of proper dimension.

One can have in mind the \textit{hyperplane section function}
\[f_K(\xi) = |K \cap \xi^\perp|, \]

or the \textit{hyperplane projection function}
\[f_K(\xi) = |K|\xi^\perp|, \]

where \(\xi^\perp \) is the central hyperplane perpendicular to \(\xi \in S^{n-1} \), and \(K|\xi^\perp \) is the orthogonal projection of \(K \) to \(\xi^\perp \).
If the answer is affirmative, one can ask a stronger stability question. Suppose

\[f_K(\xi) \leq f_L(\xi) + \varepsilon, \quad \forall \xi \in S^{n-1}. \]

Does there exist a constant \(c \) not dependent on \(\varepsilon \) and such that

\[|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c\varepsilon? \]
If the answer is affirmative, one can ask a stronger stability question. Suppose
\[f_K(\xi) \leq f_L(\xi) + \varepsilon, \quad \forall \xi \in S^{n-1}. \]

Does there exist a constant \(c \) not dependent on \(\varepsilon \) and such that
\[|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c\varepsilon? \]

Suppose stability holds for both pairs \(K, L \) and \(L, K \) with the same constant \(c \).

Put \(\varepsilon = \max_{\xi \in S^{n-1}} |f_K(\xi) - f_L(\xi)|. \) Then one can switch \(K \) and \(L \). The resulting inequality for volumes will be called a volume difference inequality:

\[\left| |K|^{\frac{n-1}{n}} - |L|^{\frac{n-1}{n}} \right| \leq c\varepsilon = c \max_{\xi \in S^{n-1}} |f_K(\xi) - f_L(\xi)|. \]
If the answer is affirmative, one can ask a stronger stability question. Suppose

\[f_K(\xi) \leq f_L(\xi) + \varepsilon, \quad \forall \xi \in S^{n-1}. \]

Does there exist a constant \(c \) not dependent on \(\varepsilon \) and such that

\[|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c\varepsilon? \]

Suppose stability holds for both pairs \(K, L \) and \(L, K \) with the same constant \(c \). Put \(\varepsilon = \max_{\xi \in S^{n-1}} |f_K(\xi) - f_L(\xi)| \). Then one can switch \(K \) and \(L \). The resulting inequality for volumes will be called a \textit{volume difference inequality}:

\[
\left| |K|^{\frac{n-1}{n}} - |L|^{\frac{n-1}{n}} \right| \leq c\varepsilon = c \max_{\xi \in S^{n-1}} |f_K(\xi) - f_L(\xi)|.
\]

Suppose now that the function \(f_L \) converges to zero uniformly with respect to \(\xi \) when \(L \) approaches the empty set. Then when \(L \to \emptyset \) the volume difference inequality turns into what we call a \textit{hyperplane inequality}:

\[
|K|^{\frac{n-1}{n}} \leq c \max_{\xi \in S^{n-1}} f_K(\xi).
\]
Suppose

\[f_K(\xi) \leq f_L(\xi) - \varepsilon, \quad \forall \xi \in S^{n-1}. \]

Does there exist a constant \(c \) not dependent on \(\varepsilon \) and such that

\[|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} - c\varepsilon? \]
Suppose
\[f_K(\xi) \leq f_L(\xi) - \varepsilon, \quad \forall \xi \in S^{n-1}. \]
Does there exist a constant \(c \) not dependent on \(\varepsilon \) and such that
\[\left| K \right|^{\frac{n-1}{n}} \leq \left| L \right|^{\frac{n-1}{n}} - c\varepsilon? \]

Suppose that separation holds and \(\varepsilon = \min_{\xi \in S^{n-1}} f_L(\xi) - f_K(\xi) > 0 \). We get another kind of a volume difference inequality:
\[\left| L \right|^{\frac{n-1}{n}} - \left| K \right|^{\frac{n-1}{n}} \geq c\varepsilon = c \min_{\xi \in S^{n-1}} (f_L(\xi) - f_K(\xi)). \]
Suppose
\[f_K(\xi) \leq f_L(\xi) - \varepsilon, \quad \forall \xi \in S^{n-1}. \]

Does there exist a constant \(c \) not dependent on \(\varepsilon \) and such that
\[|K|^\frac{n-1}{n} \leq |L|^\frac{n-1}{n} - c\varepsilon? \]

Suppose that separation holds and \(\varepsilon = \min_{\xi \in S^{n-1}} f_L(\xi) - f_K(\xi) > 0 \). We get another kind of a volume difference inequality:
\[|L|^\frac{n-1}{n} - |K|^\frac{n-1}{n} \geq c\varepsilon = c \min_{\xi \in S^{n-1}} (f_L(\xi) - f_K(\xi)). \]

Again, if \(f_K \) converges to zero uniformly in \(\xi \) when \(K \) approaches the empty set, we get a hyperplane inequality:
\[|L|^\frac{n-1}{n} \geq c \min_{\xi \in S^{n-1}} f_L(\xi). \]
Hyperplane sections: $f_K(\xi) = |K \cap \xi^\perp|

Busemann-Petty problem: K, L are origin-symmetric convex bodies in \mathbb{IR}^n and $|K \cap \xi^\perp| \leq |L \cap \xi^\perp|$, $\forall \xi \in S^{n-1}$. Does it follow that $|K| \leq |L|$?
Hyperplane sections: \(f_K(\xi) = |K \cap \xi^\perp| \)

Busemann-Petty problem: \(K, L \) are origin-symmetric convex bodies in \(\mathbb{R}^n \) and \(|K \cap \xi^\perp| \leq |L \cap \xi^\perp|, \forall \xi \in S^{n-1} \). Does it follow that \(|K| \leq |L| \)?

Yes if \(n \leq 4 \), no if \(n \geq 5 \); solution completed in the end of the 90’s.

Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang
Hyperplane sections: \(f_K(\xi) = |K \cap \xi^\perp| \)

Busemann-Petty problem: \(K, L \) are origin-symmetric convex bodies in \(IR^n \) and \(|K \cap \xi^\perp| \leq |L \cap \xi^\perp| \), \(\forall \xi \in S^{n-1} \). Does it follow that \(|K| \leq |L| \)?

Yes if \(n \leq 4 \), no if \(n \geq 5 \); solution completed in the end of the 90’s.

Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang

Lutwak proved that if \(K \) is an intersection body and \(L \) is any origin-symmetric star body, then the answer is affirmative in every dimension. Following Lutwak we say that \(K \) is the intersection body of a star body \(L \) if for every \(\xi \in S^{n-1} \)

\[
\rho_K(\xi) = |L \cap \xi^\perp|.
\]

A more general class of intersection bodies is defined as the closure of the class of intersection bodies of star bodies in the radial metric:

\[
\rho(K, L) = \max_{\xi \in S^{n-1}} |\rho_K(\xi) - \rho_L(\xi)|.
\]
Hyperplane sections: $f_K(\xi) = |K \cap \xi^\perp|$

Busemann-Petty problem: K, L are origin-symmetric convex bodies in \mathbb{R}^n and $|K \cap \xi^\perp| \leq |L \cap \xi^\perp|$, $\forall \xi \in S^{n-1}$. Does it follow that $|K| \leq |L|$?

Yes if $n \leq 4$, no if $n \geq 5$; solution completed in the end of the 90’s.

Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang

Lutwak proved that if K is an *intersection body* and L is any origin-symmetric star body, then the answer is affirmative in every dimension. Following Lutwak we say that K is the *intersection body of a star body* L if for every $\xi \in S^{n-1}$

$$\rho_K(\xi) = |L \cap \xi^\perp|.$$

A more general class of *intersection bodies* is defined as the closure of the class of intersection bodies of star bodies in the radial metric:

$$\rho(K, L) = \max_{\xi \in S^{n-1}} |\rho_K(\xi) - \rho_L(\xi)|.$$

Every origin-symmetric convex body in \mathbb{R}^3 or \mathbb{R}^4 is an intersection body (Gardner, Zhang).
Hyperplane sections: \(f_K(\xi) = |K \cap \xi^\perp| \)

Busemann-Petty problem: \(K, L \) are origin-symmetric convex bodies in \(\mathbb{IR}^n \) and \(|K \cap \xi^\perp| \leq |L \cap \xi^\perp|, \forall \xi \in S^{n-1} \). Does it follow that \(|K| \leq |L| ? \)

Yes if \(n \leq 4 \), no if \(n \geq 5 \); solution completed in the end of the 90’s.

Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang

Lutwak proved that if \(K \) is an intersection body and \(L \) is any origin-symmetric star body, then the answer is affirmative in every dimension. Following Lutwak we say that \(K \) is the intersection body of a star body \(L \) if for every \(\xi \in S^{n-1} \)

\[\rho_K(\xi) = |L \cap \xi^\perp|. \]

A more general class of intersection bodies is defined as the closure of the class of intersection bodies of star bodies in the radial metric:

\[\rho(K, L) = \max_{\xi \in S^{n-1}} |\rho_K(\xi) - \rho_L(\xi)|. \]

Every origin-symmetric convex body in \(\mathbb{IR}^3 \) or \(\mathbb{IR}^4 \) is an intersection body (Gardner, Zhang).

The unit ball of any finite dimensional subspace of \(L_p, 0 < p \leq 2 \) is an intersection body.
Hyperplane sections: \(f_K(\xi) = |K \cap \xi^\perp| \)

Busemann-Petty problem: \(K, L \) are origin-symmetric convex bodies in \(IR^n \) and \(|K \cap \xi^\perp| \leq |L \cap \xi^\perp|, \forall \xi \in S^{n-1} \). Does it follow that \(|K| \leq |L| \)?

Yes if \(n \leq 4 \), no if \(n \geq 5 \); solution completed in the end of the 90’s.

Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis, Rogers, Schlumprecht, Zhang

Lutwak proved that if \(K \) is an intersection body and \(L \) is any origin-symmetric star body, then the answer is affirmative in every dimension. Following Lutwak we say that \(K \) is the intersection body of a star body \(L \) if for every \(\xi \in S^{n-1} \)

\[\rho_K(\xi) = |L \cap \xi^\perp|. \]

A more general class of intersection bodies is defined as the closure of the class of intersection bodies of star bodies in the radial metric:

\[\rho(K, L) = \max_{\xi \in S^{n-1}} |\rho_K(\xi) - \rho_L(\xi)|. \]

Every origin-symmetric convex body in \(IR^3 \) or \(IR^4 \) is an intersection body (Gardner, Zhang).

The unit ball of any finite dimensional subspace of \(L_p \), \(0 < p \leq 2 \) is an intersection body.

Intersection bodies are limits in the radial metric of radial sums of ellipsoids (Goodey, Weil), in particular, the radial sum of intersection bodies is an intersection body. Radial sum: \(\rho_{K+L} = \rho_K + \rho_L \).
Hyperplane problem: Does there exist an absolute constant C so that for any origin-symmetric convex body K in \mathbb{R}^n

$$|K|^\frac{n-1}{n} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|.$$

The best-to-date estimate $C \sim n^{1/4}$ is due to Klartag, who improved the previous estimate of Bourgain.
Hyperplane problem: Does there exist an absolute constant \(C \) so that for any origin-symmetric convex body \(K \) in \(\mathbb{R}^n \)

\[
|K|^{\frac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|.
\]

The best-to-date estimate \(C \sim n^{1/4} \) is due to Klartag, who improved the previous estimate of Bourgain.

If \(K \) is an intersection body

\[
|K|^{\frac{n-1}{n}} \leq c_n \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|,
\]

where \(c_n := |B_2^n|^{\frac{n-1}{n}} / |B_2^{n-1}| \in (\frac{1}{\sqrt{e}}, 1) \).
Hyperplane problem: Does there exist an absolute constant C so that for any origin-symmetric convex body K in \mathbb{R}^n

$$|K|^{\frac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|.$$

The best-to-date estimate $C \sim n^{1/4}$ is due to Klartag, who improved the previous estimate of Bourgain.

If K is an intersection body

$$|K|^{\frac{n-1}{n}} \leq c_n \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|,$$

where $c_n := |B_2^n|^{\frac{n-1}{n}} / |B_2^{n-1}| \in (\frac{1}{\sqrt{e}}, 1)$.

Suppose K is an intersection body, and $|K| = |B_2^n|$. Then it is not possible that $|K \cap \xi^\perp| < |B_2^{n-1}|$ for every $\xi \in S^{n-1}$.

Alexander Koldobsky

Stability and separation in volume comparison problems.
Hyperplane problem: Does there exist an absolute constant C so that for any origin-symmetric convex body K in \mathbb{R}^n

$$|K|^{-\frac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|.$$

The best-to-date estimate $C \sim n^{1/4}$ is due to Klartag, who improved the previous estimate of Bourgain.

If K is an intersection body

$$|K|^{-\frac{n-1}{n}} \leq c_n \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|,$$

where $c_n := |B_2^n|^{-\frac{n-1}{n}} / |B_2^{n-1}| \in (\frac{1}{\sqrt{e}}, 1)$.

Suppose K is an intersection body, and $|K| = |B_2^n|$. Then it is not possible that $|K \cap \xi^\perp| < |B_2^{n-1}|$ for every $\xi \in S^{n-1}$. So, $\max_{\xi \in S^{n-1}} |K \cap \xi^\perp| \geq |B_2^{n-1}|.$
Hyperplane problem: Does there exist an absolute constant C so that for any origin-symmetric convex body K in \mathbb{R}^n

$$|K|^{\frac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|.$$

The best-to-date estimate $C \sim n^{1/4}$ is due to Klartag, who improved the previous estimate of Bourgain.

If K is an intersection body

$$|K|^{\frac{n-1}{n}} \leq c_n \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|,$$

where $c_n := |B_2^n|^{\frac{n-1}{n}} / |B_2^{n-1}| \in (\frac{1}{\sqrt{e}}, 1)$.

Suppose K is an intersection body, and $|K| = |B_2^n|$. Then it is not possible that $|K \cap \xi^\perp| < |B_2^{n-1}|$ for every $\xi \in S^{n-1}$. So, $\max_{\xi \in S^{n-1}} |K \cap \xi^\perp| \geq |B_2^{n-1}|$. Now divide both sides by equal numbers

$$\frac{\max_{\xi \in S^{n-1}} |K \cap \xi^\perp|}{|K|^{\frac{n-1}{n}}} \geq \frac{|B_2^{n-1}|}{|B_2^n|^{\frac{n-1}{n}}}.$$
Suppose that $\varepsilon > 0$, K and L are origin-symmetric star bodies in IR^n, and K is an intersection body. If for every $\xi \in S^{n-1}$

$$|K \cap \xi^\perp| \leq |L \cap \xi^\perp| + \varepsilon,$$

then

$$|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c_n \varepsilon,$$

where $c_n := |B_2^n|^{\frac{n-1}{n}} / |B_2^{n-1}| \in \left(\frac{1}{\sqrt{e}}, 1\right)$.
Suppose that $\varepsilon > 0$, K and L are origin-symmetric star bodies in \mathbb{R}^n, and K is an intersection body. If for every $\xi \in S^{n-1}$

$$|K \cap \xi^\perp| \leq |L \cap \xi^\perp| + \varepsilon,$$

then

$$|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c_n \varepsilon,$$

where $c_n := |B_2^n|^{\frac{n-1}{n}} / |B_2^{n-1}| \in \left(\frac{1}{\sqrt{e}}, 1\right)$.

If K and L are intersection bodies in \mathbb{R}^n, then

$$\left| |K|^{\frac{n-1}{n}} - |L|^{\frac{n-1}{n}} \right| \leq c_n \max_{\xi \in S^{n-1}} \left| |K \cap \xi^\perp| - |L \cap \xi^\perp| \right|.$$
Suppose that $\varepsilon > 0$, K and L are origin-symmetric star bodies in \mathbb{R}^n, and K is an intersection body. If for every $\xi \in S^{n-1}$

$$|K \cap \xi^\perp| \leq |L \cap \xi^\perp| + \varepsilon,$$

then

$$|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c_n \varepsilon,$$

where $c_n := |B_2^n|^{\frac{n-1}{n}} / |B_2^{n-1}| \in (\frac{1}{\sqrt{e}}, 1)$.

If K and L are intersection bodies in \mathbb{R}^n, then

$$\left| |K|^{\frac{n-1}{n}} - |L|^{\frac{n-1}{n}} \right| \leq c_n \max_{\xi \in S^{n-1}} \left| K \cap \xi^\perp \right| - \left| L \cap \xi^\perp \right|.$$

Putting $L = \delta B_2^n$, $\delta \to 0$, we get the well-known hyperplane inequality for intersection bodies:

$$|K|^{\frac{n-1}{n}} \leq c_n \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|.$$
If K is an intersection body, so is the radial sum $K + r \varepsilon B_2^n$. Also, $(K + r \varepsilon B_2^n) \cap \xi^\perp = (K \cap \xi^\perp) + r \varepsilon B_2^{n-1}$. By the volume difference inequality applied to $K + r \varepsilon B_2^n$ and K

$$\frac{|K + r \varepsilon B_2^n|^{\frac{n-1}{n}} - |K|^{\frac{n-1}{n}}}{\varepsilon} \leq c_n \max_{\xi \in S^{n-1}} \frac{|(K \cap \xi^\perp) + r \varepsilon B_2^{n-1}| - |K \cap \xi^\perp|}{\varepsilon}.$$
If K is an intersection body, so is the radial sum $K + r \varepsilon B_2^n$. Also, \((K + r \varepsilon B_2^n) \cap \xi^\perp = (K \cap \xi^\perp) + r \varepsilon B_2^{n-1}\). By the volume difference inequality applied to $K + r \varepsilon B_2^n$ and K

$$\frac{|K + r \varepsilon B_2^n|^{n-1} - |K|^{n-1}}{n} \leq c_n \max_{\xi \in S^{n-1}} \frac{|(K \cap \xi^\perp) + r \varepsilon B_2^{n-1}| - |K \cap \xi^\perp|}{\varepsilon}.$$

Sending $\varepsilon \to 0$, we get

$$\text{as}(K) \leq \frac{|B_2^{n-1}|}{|B_2^{n-2}||B_2^n|^{1/n}} \max_{\xi \in S^{n-1}} \text{as}(K \cap \xi^\perp) |K|^{1/n},$$

where

$$\text{as}(K) = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} |K \cap \xi^\perp| d\xi$$

is the average volume of central hyperplane sections of K. Equality for $K = B_2^n$.

Alexander Koldobsky

Stability and separation in volume comparison problems.
The constant c in the separation result for sections does not depend on ε, but depends on the dimension and on the normalized inradius of K:

$$r(K) = \min_{\xi \in S^{n-1}} \frac{\rho_K(\xi)}{|K|^{1/n}}.$$

Let K and L be origin-symmetric star bodies in \mathbb{R}^n and $\varepsilon > 0$. Assume that K is an intersection body. If for every $\xi \in S^{n-1}$

$$|K \cap \xi^\perp| \leq |L \cap \xi^\perp| - \varepsilon,$$

then

$$|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} - \sqrt{\frac{2\pi}{n+1}} r(K)\varepsilon.$$
Shephard’s problem (1964): Suppose that K and L are origin-symmetric convex bodies in \mathbb{R}^n so that $|K|_\perp \leq |L|_\perp$ for every $\xi \in S^{n-1}$. Does it follow that $|K| \leq |L|$?
Hyperplane projections: $f_K(\xi) = |K|\xi^\perp$.

Shephard’s problem (1964): Suppose that K and L are origin-symmetric convex bodies in \mathbb{R}^n so that $|K|\xi^\perp \leq |L|\xi^\perp$ for every $\xi \in S^{n-1}$. Does it follow that $|K| \leq |L|$?

Yes if $n = 2$, no if $n \geq 3$; solved by Petty and Schneider, independently, in 1966.
Shephard’s problem (1964): Suppose that K and L are origin-symmetric convex bodies in \mathbb{R}^n so that $|K|\xi^\perp| \leq |L|\xi^\perp|$ for every $\xi \in S^{n-1}$. Does it follow that $|K| \leq |L|$?

Yes if $n = 2$, no if $n \geq 3$; solved by Petty and Schneider, independently, in 1966.

The answer is affirmative if L is a projection body and K any origin-symmetric convex body in \mathbb{R}^n. The projection body ΠK of K is defined by

$$h_{\Pi K}(\theta) = |K|\theta^\perp|, \quad \forall \theta \in S^{n-1},$$

where $h_K(x) = \max\{\xi \in \mathbb{R}^n : \|\xi\|_K = 1\}(x, \xi)$ is the support function of K; $h_K = \|\cdot\|_{K^\circ}$ is the norm of the polar body. If L is the projection body of some convex body, we simply say that L is a projection body.
Shephard’s problem (1964): Suppose that K and L are origin-symmetric convex bodies in \mathbb{R}^n so that $|K|\xi_\perp| \leq |L|\xi_\perp|$ for every $\xi \in S^{n-1}$. Does it follow that $|K| \leq |L|$?

Yes if $n = 2$, no if $n \geq 3$; solved by Petty and Schneider, independently, in 1966.

The answer is affirmative if L is a projection body and K any origin-symmetric convex body in \mathbb{R}^n. The projection body ΠK of K is defined by

$$h_{\Pi K}(\theta) = |K|\theta_\perp|, \quad \forall \theta \in S^{n-1},$$

where $h_K(x) = \max\{\xi \in \mathbb{R}^n : \|\xi\|_K = 1\}(x, \xi)$ is the support function of K; $h_K = \|\cdot\|_K^*$ is the norm of the polar body. If L is the projection body of some convex body, we simply say that L is a projection body.

Every projection body is the limit in the Hausdorff metric of Minkowski (vector) sums of ellipsoids centered at the origin. The Minkowski sum of projection bodies is also a projection body. An origin-symmetric convex body in \mathbb{R}^n is a projection body if and only if the polar body is the unit ball of an n-dimensional subspace of L_1.
Suppose that \(\varepsilon > 0 \), \(K \) and \(L \) are origin-symmetric convex bodies in \(\mathbb{R}^n \), and \(L \) is a projection body. If for every \(\xi \in S^{n-1} \)

\[
|K|\xi \perp \leq |L|\xi \perp - \varepsilon,
\]

then

\[
|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} - c_n \varepsilon.
\]

Recall that \(c_n > 1/\sqrt{e} \).
Suppose that $\varepsilon > 0$, K and L are origin-symmetric convex bodies in \mathbb{R}^n, and L is a projection body. If for every $\xi \in S^{n-1}$

$$|K|\frac{\xi^\perp}{\|\xi^\perp\|} \leq |L|\frac{\xi^\perp}{\|\xi^\perp\|} - \varepsilon,$$

then

$$|K|\frac{n-1}{n} \leq |L|\frac{n-1}{n} - c_n\varepsilon.$$

Recall that $c_n > 1/\sqrt{e}$.

If L is a projection body in \mathbb{R}^n and K is an arbitrary origin-symmetric convex body in \mathbb{R}^n so that $\min_{\xi \in S^{n-1}} (|L|\xi^\perp - |K|\xi^\perp) > 0$, then we get a volume difference inequality

$$|L|\frac{n-1}{n} - |K|\frac{n-1}{n} \geq c_n \min_{\xi \in S^{n-1}} (|L|\xi^\perp - |K|\xi^\perp).$$
Sending K to the empty set, we get a well-known hyperplane inequality for projection bodies. If L is a projection body in \mathbb{R}^n, then

$$|L|^\frac{n-1}{n} \geq c_n \min_{\xi \in S^{n-1}} |L|\xi^\perp|.$$
Sending K to the empty set, we get a well-known hyperplane inequality for projection bodies. If L is a projection body in \mathbb{R}^n, then

$$|L|^\frac{n-1}{n} \geq c_n \min_{\xi \in S^{n-1}} |L|\xi^\perp|.$$

For general symmetric convex bodies, K. Ball proved that c_n may and has to be replaced by c/\sqrt{n}.

It is also known and follows from the Cauchy projection formula for the surface area and the classical isoperimetric inequality that for any origin-symmetric convex body

$$|L|^\frac{n-1}{n} \leq c_n \max_{\xi \in S^{n-1}} |L|\xi^\perp|.$$
The volume difference inequality applied to $L + \varepsilon B^n_2$ and L leads to a hyperplane inequality for the surface area of projection bodies.

$$\frac{|L + \varepsilon B^n_2|^{\frac{n-1}{n}} - |L|^{\frac{n-1}{n}}}{\varepsilon} \geq c_n \min_{\xi \in S^{n-1}} \frac{|(L|\xi) + \varepsilon B^{n-1}_2| - |L|\xi|}{\varepsilon}.$$

$$S(L) \geq \frac{n}{n-1} c_n \min_{\xi \in S^{n-1}} S(L|\xi) |L|^\frac{1}{n}.$$
The volume difference inequality applied to $L + \varepsilon B^n_2$ and L leads to a hyperplane inequality for the surface area of projection bodies.

$$\frac{|L + \varepsilon B^n_2|^{\frac{n-1}{n}}}{\varepsilon} - |L|^{\frac{n-1}{n}} \geq c_n \min_{\xi \in S^{n-1}} \frac{|(L|\xi^\perp) + \varepsilon B^n_2| - |L|\eta|\xi^\perp|}{\varepsilon}.$$

In the stability result for projections the constant depends on the dimension and body. Define the normalized circumradius of L by

$$R(L) = \frac{\max_{\xi \in S^{n-1}} \rho_L(\xi)}{|L|^{\frac{1}{n}}}.$$

Suppose that $\varepsilon > 0$, K and L are origin-symmetric convex bodies in \mathbb{R}^n, and L is a projection body. If for every $\xi \in S^{n-1}$

$$|K|\xi^\perp| \leq |L|\xi^\perp| + \varepsilon,$$

then

$$|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + \sqrt{\frac{2\pi n}{n}} R(L)\varepsilon.$$
The Busemann-Petty problem for arbitrary measures; Zvavitch (2005).
Let f be an even continuous non-negative function on \mathbb{R}^n, and denote by μ the measure on \mathbb{R}^n with density f. For every closed bounded set $B \subset \mathbb{R}^n$ define

$$
\mu(B) = \int_B f(x) \, dx, \quad \mu(B \cap \xi^\perp) = \int_{B \cap \xi^\perp} f(x) \, dx.
$$

Suppose that for convex origin-symmetric bodies K and L in \mathbb{R}^n

$$
\mu(K \cap \xi^\perp) \leq \mu(L \cap \xi^\perp), \quad \forall \xi \in S^{n-1}.
$$

Does it follow that $\mu(K) \leq \mu(L)$?

Yes, if $n \leq 4$; no, if $n \geq 5$ in the sense that for every strictly positive f there exist K, L providing a counterexample.

The answer is affirmative if K is an intersection body and L is any origin-symmetric star body in \mathbb{R}^n.

Alexander Koldobsky

Stability and separation in volume comparison problems.
The Busemann-Petty problem for arbitrary measures; Zvavitch (2005).

Let f be an even continuous non-negative function on \mathbb{R}^n, and denote by μ the measure on \mathbb{R}^n with density f. For every closed bounded set $B \subset \mathbb{R}^n$ define

$$
\mu(B) = \int_B f(x) \, dx, \quad \mu(B \cap \xi^\perp) = \int_{B \cap \xi^\perp} f(x) \, dx.
$$

Suppose that for convex origin-symmetric bodies K and L in \mathbb{R}^n

$$
\mu(K \cap \xi^\perp) \leq \mu(L \cap \xi^\perp), \quad \forall \xi \in S^{n-1}.
$$

Does it follow that

$$
\mu(K) \leq \mu(L)?
$$
The Busemann-Petty problem for arbitrary measures; Zvavitch (2005).

Let f be an even continuous non-negative function on \mathbb{R}^n, and denote by μ the measure on \mathbb{R}^n with density f. For every closed bounded set $B \subset \mathbb{R}^n$ define

$$
\mu(B) = \int_B f(x) \, dx, \quad \mu(B \cap \xi^\perp) = \int_{B \cap \xi^\perp} f(x) \, dx.
$$

Suppose that for convex origin-symmetric bodies K and L in \mathbb{R}^n

$$
\mu(K \cap \xi^\perp) \leq \mu(L \cap \xi^\perp), \quad \forall \xi \in S^{n-1}.
$$

Does it follow that

$$
\mu(K) \leq \mu(L)?
$$

Yes, if $n \leq 4$; no, if $n \geq 5$ in the sense that for every strictly positive f there exist K, L providing a counterexample.
The Busemann-Petty problem for arbitrary measures; Zvavitch (2005).

Let f be an even continuous non-negative function on \mathbb{R}^n, and denote by μ the measure on \mathbb{R}^n with density f. For every closed bounded set $B \subset \mathbb{R}^n$ define

$$
\mu(B) = \int_B f(x) \, dx, \quad \mu(B \cap \xi^\perp) = \int_{B \cap \xi^\perp} f(x) \, dx.
$$

Suppose that for convex origin-symmetric bodies K and L in \mathbb{R}^n

$$
\mu(K \cap \xi^\perp) \leq \mu(L \cap \xi^\perp), \quad \forall \xi \in S^{n-1}.
$$

Does it follow that

$$
\mu(K) \leq \mu(L)?
$$

Yes, if $n \leq 4$; no, if $n \geq 5$ in the sense that for every strictly positive f there exist K, L providing a counterexample.

The answer is affirmative if K is an intersection body and L is any origin-symmetric star body in \mathbb{R}^n.
Let K and L be origin-symmetric star bodies in \mathbb{R}^n, and let $\varepsilon > 0$. Suppose that K is an intersection body and that for every $\xi \in S^{n-1}$,

$$\mu(K \cap \xi^\perp) \leq \mu(L \cap \xi^\perp) + \varepsilon.$$

Then

$$\mu(K) \leq \mu(L) + \frac{n}{n-1} c_n |K|^{1/n} \varepsilon.$$
Let K and L be origin-symmetric star bodies in \mathbb{R}^n, and let $\varepsilon > 0$. Suppose that K is an intersection body and that for every $\xi \in S^{n-1}$,

$$\mu(K \cap \xi^\perp) \leq \mu(L \cap \xi^\perp) + \varepsilon.$$

Then

$$\mu(K) \leq \mu(L) + \frac{n}{n-1} c_n |K|^{1/n} \varepsilon.$$

Interchanging K and L, we get the volume difference inequality. If both K and L are intersection bodies in \mathbb{R}^n (in particular, any origin-symmetric convex bodies in \mathbb{R}^3 or \mathbb{R}^4), then

$$|\mu(K) - \mu(L)| \leq \frac{n c_n}{n-1} \max_{\xi \in S^{n-1}} \left| \mu(K \cap \xi^\perp) - \mu(L \cap \xi^\perp) \right| \max \left\{ |K|^{1/n}, |L|^{1/n} \right\}.$$
Let K and L be origin-symmetric star bodies in \mathbb{R}^n, and let $\varepsilon > 0$. Suppose that K is an intersection body and that for every $\xi \in S^{n-1}$,

$$\mu(K \cap \xi^\perp) \leq \mu(L \cap \xi^\perp) + \varepsilon.$$

Then

$$\mu(K) \leq \mu(L) + \frac{n}{n-1} c_n |K|^{1/n} \varepsilon.$$

Interchanging K and L, we get the volume difference inequality. If both K and L are intersection bodies in \mathbb{R}^n (in particular, any origin-symmetric convex bodies in \mathbb{R}^3 or \mathbb{R}^4), then

$$|\mu(K) - \mu(L)| \leq \frac{nc_n}{n-1} \max_{\xi \in S^{n-1}} \left| \mu(K \cap \xi^\perp) - \mu(L \cap \xi^\perp) \right| \max \left\{ |K|^{1/n}, |L|^{1/n} \right\}.$$

Sending L to the empty set, we get a hyperplane inequality for arbitrary measures. If K is an intersection body in \mathbb{R}^n, then

$$\mu(K) \leq \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \mu(K \cap \xi^\perp) |K|^{1/n}.$$
Let $K = B_2^n$ and, for every $j \in N$, let f_j be a non-negative continuous function on $[0,1]$ supported in $(1 - \frac{1}{j},1)$ and such that $\int_0^1 f_j(t) dt = 1$. Let μ_j be the measure on \mathbb{R}^n with density $f_j(|x|_2)$.
Let $K = B_2^n$ and, for every $j \in \mathbb{N}$, let f_j be a non-negative continuous function on $[0,1]$ supported in $(1 - \frac{1}{j}, 1)$ and such that $\int_0^1 f_j(t)dt = 1$. Let μ_j be the measure on \mathbb{R}^n with density $f_j(|x|_2)$. We have

$$
\mu_j(B_2^n) = |S^{n-1}| \int_0^1 r^{n-1} f_j(r)dr,
$$

$$
\mu_j(B_2^n \cap \xi^\perp) = |S^{n-2}| \int_0^1 r^{n-2} f_j(r)dr.
$$
The inequality is sharp

Let $K = B_2^n$ and, for every $j \in N$, let f_j be a non-negative continuous function on $[0,1]$ supported in $(1 - \frac{1}{j}, 1)$ and such that $\int_0^1 f_j(t)dt = 1$. Let μ_j be the measure on IR^n with density $f_j(|x|_2)$. We have

$$\mu_j(B_2^n) = |S^{n-1}| \int_0^1 r^{n-1} f_j(r)dr,$$

$$\mu_j(B_2^n \cap \xi^\bot) = |S^{n-2}| \int_0^1 r^{n-2} f_j(r)dr.$$

Clearly,

$$\lim_{j \to \infty} \frac{\int_0^1 r^{n-1} f_j(r)dr}{\int_0^1 r^{n-2} f_j(r)dr} = 1,$$

so

$$\lim_{j \to \infty} \frac{\mu_j(B_2^n)}{\max_{\xi \in S^{n-1}} \mu_j(B_2^n \cap \xi^\bot) |B_2^n|^{1/n}} = \frac{|S^{n-1}|}{|S^{n-2}| |B_2^n|^{1/n}} = \frac{n}{n-1} c_n.$$
If K is an intersection body, L is an origin-symmetric star body and

$$|K \cap \xi^\perp| \leq |L \cap \xi^\perp| + \varepsilon, \quad \forall \xi \in S^{n-1}$$

then

$$|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c_n \varepsilon.$$
If K is an intersection body, L is an origin-symmetric star body and

$$|K \cap \xi^\perp| \leq |L \cap \xi^\perp| + \varepsilon, \quad \forall \xi \in S^{n-1}$$

then

$$|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c_n \varepsilon.$$

so (1) can be written as

$$\left(\|x\|_K^{-n+1}\right)^\wedge(\xi) \leq \left(\|x\|_L^{-n+1}\right)^\wedge(\xi) + \pi(n-1)\varepsilon, \quad \forall \xi \in S^{n-1}.$$
If K is an intersection body, L is an origin-symmetric star body and

$$|K \cap \xi^\perp| \leq |L \cap \xi^\perp| + \varepsilon, \quad \forall \xi \in S^{n-1}$$

(1)

then

$$|K|^{\frac{n-1}{n}} \leq |L|^{\frac{n-1}{n}} + c_n \varepsilon.$$

$$|K \cap \xi^\perp| = \frac{1}{\pi(n-1)}(\|x\|^{-n+1}_K)^\wedge(\xi), \quad \forall \xi \in S^{n-1},$$

so (1) can be written as

$$(\|x\|^{-n+1}_K)^\wedge(\xi) \leq (\|x\|^{-n+1}_L)^\wedge(\xi) + \pi(n-1) \varepsilon, \quad \forall \xi \in S^{n-1}.$$

An origin-symmetric star body K in \mathbb{R}^n is an intersection body iff $\|x\|^{-1}_K$ is a positive definite distribution, so the Fourier transform

$$(\|x\|^{-1}_K)^\wedge(\xi) \geq 0, \quad \forall \xi \in S^{n-1}.$$
\[
\int_{S^{n-1}} (\|x\|^{-n+1}_K)^\xi (\|x\|^{-1}_K)^\xi \, d\xi \leq \int_{S^{n-1}} (\|x\|^{-n+1}_K)^\xi (\|x\|^{-1}_K)^\xi \, d\xi + \pi (n-1) \varepsilon \int_{S^{n-1}} (\|x\|^{-1}_K)^\xi \, d\xi.
\]
Proof of stability for sections, part 2

$$\int_{S^{n-1}} (\|x\|_{K}^{n+1})^\wedge (\xi)(\|x\|_{K}^{-1})^\wedge (\xi) \, d\xi \leq \int_{S^{n-1}} (\|x\|_{K}^{n+1})^\wedge (\xi)(\|x\|_{K}^{-1})^\wedge (\xi) \, d\xi + \pi(n-1)\varepsilon \int_{S^{n-1}} (\|x\|_{K}^{-1})^\wedge (\xi) \, d\xi.$$

By Parseval’s formula on the sphere, polar formula for volume and Hölder’s inequality,

$$(2\pi)^n n|K| = (2\pi)^n \int_{S^{n-1}} \|x\|_{K}^{-n+1}\|x\|_{K}^{-1} dx \leq (2\pi)^n \int_{S^{n-1}} \|x\|_{L}^{-n+1}\|x\|_{K}^{-1} dx + \pi(n-1)\varepsilon \int_{S^{n-1}} (\|x\|_{K}^{-1})^\wedge (\xi) d\xi \leq (2\pi)^n n|K| \frac{1}{n} \frac{n-1}{n} + \pi(n-1)\varepsilon \int_{S^{n-1}} (\|x\|_{K}^{-1})^\wedge (\xi) d\xi.$$

$$|K| = \frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(x) \, dx = \frac{1}{n} \int_{S^{n-1}} \|x\|_{K}^{-n} dx.$$
To estimate the second summand, we use the formula for the Fourier transform

\[(|x|_2^{-n+1})^\wedge (\xi) = \frac{2\pi^{\frac{n+1}{2}}}{\Gamma(\frac{n-1}{2})} |\xi|_2^{-1}. \]

By Parseval’s formula and Hölder’s inequality,

\[
\int_{S^{n-1}} (\|x\|_K^{-1})^\wedge (\xi) d\xi = \\
\frac{\Gamma(\frac{n-1}{2})}{2\pi^{\frac{n+1}{2}}} \int_{S^{n-1}} (\|x\|_K^{-1})^\wedge (\xi)(|x|_2^{-n+1})^\wedge (\xi) d\xi \\
= \frac{(2\pi)^n \Gamma(\frac{n-1}{2})}{2\pi^{\frac{n+1}{2}}} \int_{S^{n-1}} \|x\|_K^{-1} dx \\
\leq \frac{(2\pi)^n \Gamma(\frac{n-1}{2}) |S^{n-1}|^{\frac{n-1}{n}}}{2\pi^{\frac{n+1}{2}}} \left(\int_{S^{n-1}} \|x\|_K^{-n} dx \right)^{\frac{1}{n}} \\
= \frac{(2\pi)^n \Gamma(\frac{n-1}{2}) |S^{n-1}|^{\frac{n-1}{n}}}{2\pi^{\frac{n+1}{2}}} (n|K|)^{\frac{1}{n}}
\]
Combining these estimates,

\[(2\pi)^n n |K| \leq (2\pi)^n n |K| \frac{1}{n} |L| \frac{n-1}{n} + \frac{(2\pi)^n \pi (n-1) n \frac{1}{n} \Gamma \left(\frac{n-1}{2} \right) |S^{n-1}| \frac{n-1}{n}}{2\pi \frac{n+1}{2}} |K| \frac{1}{n} \varepsilon.\]

Now to represent the coefficient in the required form use

\[|S^{n-1}| = n |B^n_2| = \frac{2\pi \frac{n}{2}}{\Gamma \left(\frac{n}{2} \right)}.\]

We get

\[|K| \frac{n-1}{n} \leq |L| \frac{n-1}{n} + \frac{|B^n_2| \frac{n-1}{n}}{|B^{n-1}_2|} \varepsilon.\]