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I. The Brunn-Minkowski inequality for convex measures

Theorem (Brunn-Minkowski inequality)

The Brunn-Minkowski inequality states that for every convex (compact)
subset A,B ⊂ Rn and every λ ∈ [0,1], one has

|(1−λ)A + λB|1/n ≥ (1−λ)|A|1/n + λ|B|1/n.

Here | · | denotes Lebesgue measure in Rn, and
A + B = {a + b : a ∈ A,b ∈ B} denotes the Minkowski sum of A and B.

→ Yields the isoperimetric inequality in a few lines:
Among sets of a given perimeter, Euclidean balls maximize the volume.
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Conjecture (Gardner-Zvavitch (2010); Nayar-Tkocz (2013))

The inequality

γn((1−λ)A + λB)1/n ≥ (1−λ)γn(A)1/n + λγn(B)1/n

holds for every symmetric convex set A,B ⊂ Rn and every λ ∈ [0,1],
where γn denotes the standard Gaussian measure.

dγn(x) =
1

(2π)n/2
e−

|x |2
2 dx , x ∈ Rn.

The conjecture cannot hold for arbitrary set:
→ Take A = [0,1], B = {b} and let b go to +∞.
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Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

The inequality

γn((1−λ)A + λB)1/n ≥ (1−λ)γn(A)1/n + λγn(B)1/n

holds when:
1 A,B ⊂ R2 are symmetric convex sets in the plane,
2 A,B ⊂ Rn are unconditional convex sets in Rn.

unconditional: A⊂ Rn is unconditional if for every (x1, . . . ,xn) ∈ A and
every (ε1, . . . ,εn) ∈ {−1,1}n, one has

(ε1x1, . . . ,εnxn) ∈ A.
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II. New isoperimetric inequalities

We deduce the following isoperimetric type inequality:

Theorem (Livshyts, M., Nayar, Zvavitch)

Let A be an unconditional convex set in Rn (or a symmetric convex set
in R2). Let r > 0 such that γn(A) = γn(rBn

2). Then,

rγ
+
n (∂A) +

∫
A
|x |2dγn(x)≥ rγ

+
n (∂(rBn

2)) +
∫

rBn
2

|x |2dγn(x).

In other words, Euclidean balls minimize the quantity

rγ
+
n (∂A) +

∫
A
|x |2dγn(x)

among unconditional convex sets in Rn (or symmetric convex sets in
R2) with prescribed measure.
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III. The Proof

Support function of a convex set:
Let A⊂ Rn be a convex set. The support function of A is

hA(u) = max
x∈A
〈x ,u〉, u ∈ Sn−1.

It is known that

A = {x ∈ Rn : 〈x ,u〉 ≤ hA(u), for all u ∈ Sn−1}.

and
hA+B = hA + hB, hλA = λhA.
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Lp-Minkowski sum:
Let A,B ⊂ Rn be convex sets, and let λ ∈ [0,1].

(1−λ)A + λB = {x ∈ Rn : 〈x ,u〉 ≤ h(1−λ)A+λB(u), for all u ∈ Sn−1}

= {x ∈ Rn : 〈x ,u〉 ≤ (1−λ)hA(u) + λhB(u),∀u ∈ Sn−1}
= {x ∈ Rn : 〈x ,u〉 ≤Mλ

1 (hA(u),hB(u)), for all u ∈ Sn−1}
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Lp-Minkowski sum:

(1−λ)A + λB = {x ∈ Rn : 〈x ,u〉 ≤Mλ
1 (hA(u),hB(u)), for all u ∈ Sn−1}

Let us define, for a,b ≥ 0, λ ∈ [0,1], and p ∈ [−∞,+∞],

Mλ
p (a,b) = ((1−λ)ap + λbp)

1
p if p /∈ {−∞,0,+∞}

Mλ
−∞(a,b) = min(a,b)

Mλ
0 (a,b) = a1−λbλ

Mλ
+∞(a,b) = max(a,b).

Let A,B ⊂ Rn be convex sets, let λ ∈ [0,1], and p ∈ [−∞,+∞]. We
define their Lp-Minkowski sum by

(1−λ) ·A+p λ·B = {x ∈Rn : 〈x ,u〉≤Mλ
p (hA(u),hB(u)), for all u ∈Sn−1}.
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Lp-Minkowski sum:

(1−λ)A + λB = {x ∈ Rn : 〈x ,u〉 ≤Mλ
1 (hA(u),hB(u)), for all u ∈ Sn−1}

(1−λ) ·A+p λ·B = {x ∈Rn : 〈x ,u〉≤Mλ
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Remark

For every p ≥ q, (1−λ) ·A +p λ ·B ⊃ (1−λ) ·A +q λ ·B.
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Böröczky, Lutwak, Yang and Zhang conjectured the following:

Conjecture (log-Brunn-Minkowski inequality (2012))

Let A,B ⊂ Rn be symmetric convex sets and let λ ∈ [0,1]. Then,

|(1−λ) ·A +0 λ ·B| ≥ |A|1−λ|B|λ.

Theorem (Böröczky, Lutwak, Yang and Zhang (2012))

The log-Brunn-Minkowski conjecture holds in R2.

Theorem (Saroglou (2014))

The log-Brunn-Minkowski conjecture holds in Rn in the unconditional
case.
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Theorem (Saroglou (2015+))

The log-Brunn-Minkowski inequality for Lebesgue measure is
equivalent to the log-Brunn-Minkowski inequality for symmetric
log-concave measure.

As the result, the inequality

µ((1−λ) ·A +0 λ ·B)≥ µ(A)1−λµ(B)λ

holds for symmetric log-concave measure µ and symmetric convex
sets A,B in R2; and for unconditional log-concave measure µ and
unconditional convex sets A,B in Rn.
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We proved a more general result:

Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

1 Let µ be a measure on R2 with an even log-concave density.
Then µ satisfies the Brunn-Minkowski inequality in the class of
symmetric convex sets in R2.

2 Let µ be an unconditional log-concave measure on Rn. Then µ
satisfies the Brunn-Minkowski inequality in the class of
unconditional convex sets in Rn.

3 Let µ be an unconditional product measure with decreasing
density. Then µ satisfies the Brunn-Minkowski inequality in the
class of unconditional convex sets in Rn.

Arnaud Marsiglietti October 27, 2015 12



We proved a more general result:

Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

1 Let µ be a measure on R2 with an even log-concave density.
Then µ satisfies the Brunn-Minkowski inequality in the class of
symmetric convex sets in R2.

2 Let µ be an unconditional log-concave measure on Rn. Then µ
satisfies the Brunn-Minkowski inequality in the class of
unconditional convex sets in Rn.

3 Let µ be an unconditional product measure with decreasing
density. Then µ satisfies the Brunn-Minkowski inequality in the
class of unconditional convex sets in Rn.

Arnaud Marsiglietti October 27, 2015 12



We proved a more general result:

Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

1 Let µ be a measure on R2 with an even log-concave density.
Then µ satisfies the Brunn-Minkowski inequality in the class of
symmetric convex sets in R2.

2 Let µ be an unconditional log-concave measure on Rn. Then µ
satisfies the Brunn-Minkowski inequality in the class of
unconditional convex sets in Rn.

3 Let µ be an unconditional product measure with decreasing
density. Then µ satisfies the Brunn-Minkowski inequality in the
class of unconditional convex sets in Rn.

Arnaud Marsiglietti October 27, 2015 12



We proved a more general result:

Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

1 Let µ be a measure on R2 with an even log-concave density.
Then µ satisfies the Brunn-Minkowski inequality in the class of
symmetric convex sets in R2.

2 Let µ be an unconditional log-concave measure on Rn. Then µ
satisfies the Brunn-Minkowski inequality in the class of
unconditional convex sets in Rn.

3 Let µ be an unconditional product measure with decreasing
density. Then µ satisfies the Brunn-Minkowski inequality in the
class of unconditional convex sets in Rn.

Arnaud Marsiglietti October 27, 2015 12



Proof:
Let p ∈ (0,1).

µ((1−λ)A + λB) = µ
(

(1−p)
1−λ

1−p
A + p

λ

p
B

)

≥ µ
(

(1−p) ·
(

1−λ

1−p
A

)
+0 p ·

(
λ

p
B

))
= µ

([(
1−λ

1−p

)1−p(
λ

p

)p
]

(1−p) ·A +0 p.B

)

≥

[(
1−λ

1−p

)1−p(
λ

p

)p
]n

µ((1−p) ·A +0 p.B)
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Proof:

µ((1−λ)A + λB) ≥

[(
1−λ

1−p

)1−p(
λ

p

)p
]n

µ((1−p) ·A +0 p.B)

≥

[(
1−λ

1−p

)1−p(
λ

p

)p
]n

µ(A)1−pµ(B)p.

Optimizing in p ∈ (0,1), i.e. taking

p =
λµ(B)1/n

(1−λ)µ(A)1/n + λµ(B)1/n
(1)

yields

µ((1−λ)A + λB)1/n ≥ (1−λ)µ(A)1/n + λµ(B)1/n.
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As a consequence:

Theorem (Livshyts, M., Nayar, Zvavitch)

The inequality

γn((1−λ)A + λB)1/n ≥ (1−λ)γn(A)1/n + λγn(B)1/n

holds when:
1 A,B ⊂ R2 are symmetric convex sets in the plane,
2 A,B ⊂ Rn are unconditional convex sets in Rn.
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Theorem (Livshyts, M., Nayar, Zvavitch)

1 Let µ be a measure on R2 with an even log-concave density.
Then µ satisfies the Brunn-Minkowski inequality in the class of
symmetric convex sets in R2.

2 Let µ be an unconditional log-concave measure on Rn. Then µ
satisfies the Brunn-Minkowski inequality in the class of
unconditional convex sets in Rn.

3 Let µ be an unconditional product measure with decreasing
density. Then µ satisfies the Brunn-Minkowski inequality in the
class of unconditional convex sets in Rn.
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Theorem (Livshyts, M., Nayar, Zvavitch)

Fix λ,p ∈ (0,1). Suppose that m, f ,g are unconditional decreasing
non-negative functions and let µ be an unconditional product measure
with decreasing density on Rn. Assume that for any x ,y ∈ Rn we have

m((1−λ)x + λy)≥ f (x)1−pg(y)p.

Then∫
m dµ≥

[(
1−λ

1−p

)1−p(
λ

p

)p
]n(∫

f dµ
)1−p(∫

g dµ
)p

.
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IV. Functional versions of the Brunn-Minkowski inequality

Theorem (Prékopa-Leindler inequality)

Let λ ∈ [0,1] and f ,g,h : Rn→ [0,+∞) be measurable functions. If
the inequality

h((1−λ)x + λy)≥ f (x)1−λg(y)λ

holds for every x ∈ supp(f ),y ∈ supp(g), then

∫
h ≥

(∫
f

)1−λ(∫
g

)λ

.

→ (Almost) Yields the Brunn-Minkowski inequality by taking indicator
of sets (f = 1A, g = 1B, h = 1(1−λ)A+λB).
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Theorem (Borell-Brascamp-Lieb inequality)

Let γ≥− 1
n , λ ∈ [0,1] and f ,g,h : Rn→ [0,+∞) be measurable

functions. If the inequality

h((1−λ)x + λy)≥Mλ
γ (f (x),g(y))

holds for every x ∈ supp(f ),y ∈ supp(g), then∫
h ≥Mλ

γ

1+γn

(∫
f ,
∫

g

)
.

→ (Exactly) Yields the Brunn-Minkowski inequality by taking indicator
of sets and γ = +∞.
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Theorem (geometric Prékopa-Leindler inequality)

Let λ ∈ [0,1] and f ,g,h : [0,+∞)n→ [0,+∞) be measurable
functions. If the inequality

h(x1−λyλ)≥ f (x)1−λg(y)λ

holds for every x ,y ∈ [0,+∞)n, then

∫
[0,+∞)n

h ≥
(∫

[0,+∞)n
f

)1−λ(∫
[0,+∞)n

g

)λ

.
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Theorem (nonlinear extension of the Brunn-Minkowski inequality)

Let p = (p1, . . . ,pn) ∈ [0,1]n, γ≥−(∑
n
i=1 p−1

i )−1, λ ∈ [0,1], and
f ,g,h : [0,+∞)n→ [0,+∞) be measurable functions. If the inequality

h(Mλ
p (x ,y))≥Mλ

γ (f (x),g(y))

holds for every x ∈ supp(f ),y ∈ supp(g), then∫
[0,+∞)n

h ≥Mλ

(∑n
i=1 p−1

i +γ−1)−1

(∫
[0,+∞)n

f ,
∫
[0,+∞)n

g

)
.
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Theorem (Borell inequality (1974))

Let f ,g,h : Rn→ [0,+∞) be measurable functions. Let
ϕ = (ϕ1, . . . ,ϕn) : supp(f )× supp(g)→ Rn be a continuously
differentiable function with positive partial derivatives, such that
ϕk (x ,y) = ϕk (xk ,yk ) for every x = (x1, . . . ,xn) ∈ supp(f ),
y = (y1, . . . ,yn) ∈ supp(g). Let Φ : [0,+∞)× [0,+∞)→ [0,+∞) be a
continuous function, homogeneous of degree 1 and increasing in each
variable. If the inequality

h(ϕ(x ,y))Πn
k=1

(
∂ϕk

∂xk
ρk +

∂ϕk

∂yk
ηk

)
≥ Φ(f (x)Πn

k=1ρk ,g(y)Πn
k=1ηk )

holds for every x ∈ supp(f ), for every y ∈ supp(g), for every
ρ1, . . . ,ρn > 0 and for every η1, . . . ,ηn > 0, then∫

h ≥ Φ

(∫
f ,
∫

g

)
.
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[Sketch of proof]

By induction on the dimension (the inequality tensorizes). To prove the
inequality in dimension 1, we use a mass transportation technique:

We may assume that
∫

f =
∫

g = 1, and that f ,g are compactly
supported positive Lipschitz functions. Thus there exists a
non-decreasing map T : supp(f )→ supp(g) such that for every
x ∈ supp(f ),

f (x) = g(T (x))T ′(x).
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Hence one has,∫
h(z)dz ≥

∫
supp(f )

h(ϕ(x ,T (x)))

(
∂ϕ

∂x
+

∂ϕ

∂y
T ′(x)

)
dx

≥
∫

supp(f )
Φ(f (x),g(T (x))T ′(x))dx

=
∫

Φ(f (x), f (x))dx .

Using homogeneity of Φ, one deduces that∫
h ≥ Φ(1,1)

∫
f (x)dx = Φ

(∫
f ,
∫

g

)
.
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Recall that:

Theorem (Saroglou (2014))

The log-Brunn-Minkowski conjecture holds in Rn in the unconditional
case.

Saroglou’s proof tells us that the geometric prekopa-Leindler inequality
implies the log-Brunn-Minkowski inequality for unconditional sets.

geometric-PL =⇒ log-BM for unconditional sets
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The log-BM for convex measures:

Conjecture (M. (2015))

Let p ∈ [0,1]. Let µ be a symmetric measure in Rn that has an
α-concave density function, with α≥−p

n . Then for every symmetric
convex set A,B ⊂ Rn and for every λ ∈ [0,1],

µ((1−λ) ·A +p λ ·B)≥Mλ

( n
p+

1
α )
−1(µ(A),µ(B)).

Recall that

(1−λ) ·A+p λ·B = {x ∈Rn : 〈x ,u〉≤Mλ
p (hA(u),hB(u)), for all u ∈Sn−1}.

If α or p is equal to 0, then (n/p + 1/α)−1 is defined by continuity and
is equal to 0. The log-Brunn-Minkowski conjecture is obtained by
taking µ to be Lebesgue measure and p = 0.
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Theorem (M. 20++)

If the log-Brunn-Minkowski inequality for Lebesgue measure holds
then the inequality

µ((1−λ) ·A +p λ ·B)≥Mλ

( n
p+

1
α )
−1(µ(A),µ(B)).

holds for every symmetric measure µ that has an α-concave density
function, with α≥−p

n , and for all symmetric convex sets A,B ⊂ Rn .
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Summary:

BM =⇒ PL (Folk.)

=⇒ geometric-PL (Ball 1988)

=⇒ log-BM for unconditional sets (Saroglou 2014)

=⇒ gaussian-BM unconditional (Livshyts, M., Nayar, Zvavitch 2015+)

=⇒ rγ
+
n (∂A) +

∫
A
|x |2dγn(x)≥ rγ

+
n (∂(rBn

2)) +
∫

rBn
2

|x |2dγn(x)

for unconditional sets A⊂ Rn such that γn(A) = γn(rBn
2).

Conclusion: In the unconditional case, the Brunn-Minkowski inequality
is very strong!
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Summary:
In the symmetric case, the log-Brunn-Minkowski inequality is very
strong!

log-BM =⇒ gaussian-BM (Livshyts, M., Nayar, Zvavitch 2015+)

=⇒ rγ
+
n (∂A) +

∫
A
|x |2dγn(x)≥ rγ

+
n (∂(rBn

2)) +
∫

rBn
2

|x |2dγn(x)

for symmetric sets A⊂ Rn such that γn(A) = γn(rBn
2).
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Conjecture (1)

The inequality
|(1−λ) ·A +0 λ ·B| ≥ |A|1−λ|B|λ

holds for every symmetric convex set A,B ⊂ Rn, n ≥ 3.

Conjecture (2)

The inequality

γn((1−λ)A + λB)1/n ≥ (1−λ)γn(A)1/n + λγn(B)1/n

holds for every symmetric convex set A,B ⊂ Rn, n ≥ 3.
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Conjecture (3)

The inequality
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+
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n (∂(rBn
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rBn
2

|x |2dγn(x)

holds for every symmetric convex set A⊂ Rn, n ≥ 3, such that
γn(A) = γn(rBn

2).
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Thank you for your attention !!!
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