On the Brunn-Minkowski inequality for convex measures with applications to new isoperimetric inequalities

Arnaud Marsiglietti

Institute for Mathematics and its Applications University of Minnesota

October 27, 2015

(ロト・国・・国・・国・ つんの

Arnaud Marsiglietti

Theorem (Brunn-Minkowski inequality)

Theorem (Brunn-Minkowski inequality)

The Brunn-Minkowski inequality states that for every convex (compact) subset $A, B \subset \mathbb{R}^n$ and every $\lambda \in [0, 1]$, one has

$$|(1-\lambda)A+\lambda B|^{1/n} \geq (1-\lambda)|A|^{1/n}+\lambda|B|^{1/n}.$$

Theorem (Brunn-Minkowski inequality)

The Brunn-Minkowski inequality states that for every convex (compact) subset $A, B \subset \mathbb{R}^n$ and every $\lambda \in [0, 1]$, one has

$$|(1-\lambda)A+\lambda B|^{1/n} \geq (1-\lambda)|A|^{1/n}+\lambda|B|^{1/n}.$$

Here $|\cdot|$ denotes Lebesgue measure in \mathbb{R}^n , and $A+B = \{a+b : a \in A, b \in B\}$ denotes the Minkowski sum of A and B.

Theorem (Brunn-Minkowski inequality)

The Brunn-Minkowski inequality states that for every convex (compact) subset $A, B \subset \mathbb{R}^n$ and every $\lambda \in [0, 1]$, one has

$$|(1-\lambda)A+\lambda B|^{1/n} \geq (1-\lambda)|A|^{1/n}+\lambda|B|^{1/n}.$$

Here $|\cdot|$ denotes Lebesgue measure in \mathbb{R}^n , and $A+B = \{a+b : a \in A, b \in B\}$ denotes the Minkowski sum of A and B.

 \rightarrow Yields the isoperimetric inequality in a few lines: Among sets of a given perimeter, Euclidean balls maximize the volume.

Theorem (Brunn-Minkowski inequality)

The Brunn-Minkowski inequality states that for every convex (compact) subset $A, B \subset \mathbb{R}^n$ and every $\lambda \in [0, 1]$, one has

$$|(1-\lambda)A+\lambda B|^{1/n} \geq (1-\lambda)|A|^{1/n}+\lambda|B|^{1/n}.$$

Here $|\cdot|$ denotes Lebesgue measure in \mathbb{R}^n , and $A+B = \{a+b : a \in A, b \in B\}$ denotes the Minkowski sum of A and B.

 \rightarrow Yields the isoperimetric inequality in a few lines: Among sets of a given perimeter, Euclidean balls maximize the volume.

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \ge (1-\lambda)\gamma_n(A)^{1/n} + \lambda\gamma_n(B)^{1/n}$$

holds for every symmetric convex set $A, B \subset \mathbb{R}^n$ and every $\lambda \in [0, 1]$, where γ_n denotes the standard Gaussian measure.

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \geq (1-\lambda)\gamma_n(A)^{1/n} + \lambda\gamma_n(B)^{1/n}$$

holds for every symmetric convex set $A, B \subset \mathbb{R}^n$ and every $\lambda \in [0, 1]$, where γ_n denotes the standard Gaussian measure.

$$\mathrm{d}\gamma_n(x)=\frac{1}{(2\pi)^{n/2}}\mathrm{e}^{-\frac{|x|^2}{2}}\mathrm{d}x, \quad x\in\mathbb{R}^n.$$

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \ge (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

holds for every symmetric convex set $A, B \subset \mathbb{R}^n$ and every $\lambda \in [0, 1]$, where γ_n denotes the standard Gaussian measure.

$$\mathrm{d}\gamma_n(x)=\frac{1}{(2\pi)^{n/2}}\mathrm{e}^{-\frac{|x|^2}{2}}\mathrm{d}x, \quad x\in\mathbb{R}^n.$$

The conjecture cannot hold for arbitrary set:

 \rightarrow Take A = [0, 1], $B = \{b\}$ and let b go to $+\infty$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Arnaud Marsiglietti

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \geq (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

holds

Arnaud Marsiglietti

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \ge (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

holds when:

• $A, B \subset \mathbb{R}^2$ are symmetric convex sets in the plane,

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \ge (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

< ≣ >

holds when:

- $A, B \subset \mathbb{R}^2$ are symmetric convex sets in the plane,
- **2** $A, B \subset \mathbb{R}^n$ are unconditional convex sets in \mathbb{R}^n .

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \ge (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

▶ < 프 ▶ < 프 ▶</p>

holds when:

- $A, B \subset \mathbb{R}^2$ are symmetric convex sets in the plane,
- **2** $A, B \subset \mathbb{R}^n$ are unconditional convex sets in \mathbb{R}^n .

unconditional:

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \ge (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

holds when:

• $A, B \subset \mathbb{R}^2$ are symmetric convex sets in the plane,

2 $A, B \subset \mathbb{R}^n$ are unconditional convex sets in \mathbb{R}^n .

<u>unconditional</u>: $A \subset \mathbb{R}^n$ is unconditional if for every $(x_1, \ldots, x_n) \in A$ and every $(\varepsilon_1, \ldots, \varepsilon_n) \in \{-1, 1\}^n$, one has

$$(\varepsilon_1 x_1,\ldots,\varepsilon_n x_n) \in A.$$

▶ < 필 > < 필 > ...

(□ → 《□ → 《三 → 《三 → 《□ → 《○

Arnaud Marsiglietti

We deduce the following isoperimetric type inequality:

Theorem (Livshyts, M., Nayar, Zvavitch)

We deduce the following isoperimetric type inequality:

Theorem (Livshyts, M., Nayar, Zvavitch)

Let A be an unconditional convex set in \mathbb{R}^n (or a symmetric convex set in \mathbb{R}^2). Let r > 0 such that $\gamma_n(A) = \gamma_n(rB_2^n)$. Then,

$$r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x) \ge r\gamma_n^+(\partial(rB_2^n)) + \int_{rB_2^n} |x|^2 \mathrm{d}\gamma_n(x).$$

We deduce the following isoperimetric type inequality:

Theorem (Livshyts, M., Nayar, Zvavitch)

Let A be an unconditional convex set in \mathbb{R}^n (or a symmetric convex set in \mathbb{R}^2). Let r > 0 such that $\gamma_n(A) = \gamma_n(rB_2^n)$. Then,

$$r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x) \geq r\gamma_n^+(\partial(rB_2^n)) + \int_{rB_2^n} |x|^2 \mathrm{d}\gamma_n(x).$$

In other words, Euclidean balls minimize the quantity

$$r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x)$$

among unconditional convex sets in \mathbb{R}^n (or symmetric convex sets in \mathbb{R}^2) with prescribed measure.

Arnaud Marsiglietti

Arnaud Marsiglietti

Support function of a convex set:

Let $A \subset \mathbb{R}^n$ be a convex set. The support function of A is

$$h_A(u) = \max_{x \in A} \langle x, u \rangle, \quad u \in S^{n-1}.$$

Support function of a convex set: Let $A \subset \mathbb{R}^n$ be a convex set. The support function of A is

$$h_A(u) = \max_{x \in A} \langle x, u \rangle, \quad u \in S^{n-1}.$$

It is known that

$$A = \{x \in \mathbb{R}^n : \langle x, u \rangle \le h_A(u), \text{ for all } u \in S^{n-1}\}.$$

and

$$h_{A+B} = h_A + h_B, \qquad h_{\lambda A} = \lambda h_A.$$

Support function of a convex set: Let $A \subset \mathbb{R}^n$ be a convex set. The support function of A is

$$h_A(u) = \max_{x \in A} \langle x, u \rangle, \quad u \in S^{n-1}.$$

It is known that

$$A = \{x \in \mathbb{R}^n : \langle x, u \rangle \le h_A(u), \text{ for all } u \in S^{n-1}\}.$$

and

$$h_{A+B} = h_A + h_B, \qquad h_{\lambda A} = \lambda h_A.$$

<u>*L^p*-Minkowski sum:</u> Let $A, B \subset \mathbb{R}^n$ be convex sets, and let $\lambda \in [0, 1]$.

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le h_{(1-\lambda)A + \lambda B}(u), \text{ for all } u \in S^{n-1}\}$$

-

<u>L^p-Minkowski sum:</u>

Let $A, B \subset \mathbb{R}^n$ be convex sets, and let $\lambda \in [0, 1]$.

$$(1-\lambda)A + \lambda B = \{ x \in \mathbb{R}^n : \langle x, u \rangle \le h_{(1-\lambda)A + \lambda B}(u), \text{ for all } u \in S^{n-1} \}$$

= $\{ x \in \mathbb{R}^n : \langle x, u \rangle \le (1-\lambda)h_A(u) + \lambda h_B(u), \forall u \in S^{n-1} \}$

<u>L^p-Minkowski sum:</u>

Let $A, B \subset \mathbb{R}^n$ be convex sets, and let $\lambda \in [0, 1]$.

$$\begin{aligned} (1-\lambda)A + \lambda B &= \{ x \in \mathbb{R}^n : \langle x, u \rangle \le h_{(1-\lambda)A + \lambda B}(u), \text{ for all } u \in S^{n-1} \} \\ &= \{ x \in \mathbb{R}^n : \langle x, u \rangle \le (1-\lambda)h_A(u) + \lambda h_B(u), \forall u \in S^{n-1} \} \\ &= \{ x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^\lambda(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1} \} \end{aligned}$$

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^{\lambda}(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$$

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^\lambda(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$$

Let us define, for $a, b \ge 0, \lambda \in [0, 1]$, and $p \in [-\infty, +\infty]$, $M_p^{\lambda}(a, b) = ((1 - \lambda)a^{\rho} + \lambda b^{\rho})^{\frac{1}{\rho}} \text{ if } p \notin \{-\infty, 0, +\infty\}$

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^\lambda(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$$

Let us define, for $a, b \ge 0, \lambda \in [0, 1]$, and $p \in [-\infty, +\infty]$,

$$\begin{aligned} M^{\lambda}_{p}(a,b) &= ((1-\lambda)a^{p}+\lambda b^{p})^{\frac{1}{p}} & \text{if } p \notin \{-\infty,0,+\infty\} \\ M^{\lambda}_{-\infty}(a,b) &= \min(a,b) \end{aligned}$$

3

イロト イポト イヨト イヨト

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^\lambda(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$$

Let us define, for $a, b \ge 0, \lambda \in [0, 1]$, and $p \in [-\infty, +\infty]$,

$$\begin{split} M_p^{\lambda}(a,b) &= ((1-\lambda)a^p + \lambda b^p)^{\frac{1}{p}} & \text{if } p \notin \{-\infty,0,+\infty\} \\ M_{-\infty}^{\lambda}(a,b) &= \min(a,b) \\ M_0^{\lambda}(a,b) &= a^{1-\lambda}b^{\lambda} \end{split}$$

3

イロト イポト イヨト イヨト

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^\lambda(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$$

Let us define, for $a, b \ge 0, \lambda \in [0, 1]$, and $p \in [-\infty, +\infty]$,

$$\begin{split} M^{\lambda}_{p}(a,b) &= ((1-\lambda)a^{p}+\lambda b^{p})^{\frac{1}{p}} & \text{if } p \notin \{-\infty,0,+\infty\} \\ M^{\lambda}_{-\infty}(a,b) &= \min(a,b) \\ M^{\lambda}_{0}(a,b) &= a^{1-\lambda}b^{\lambda} \\ M^{\lambda}_{+\infty}(a,b) &= \max(a,b). \end{split}$$

3

イロト イポト イヨト イヨト

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^\lambda(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$$

Let us define, for $a, b \ge 0, \lambda \in [0, 1]$, and $p \in [-\infty, +\infty]$,

$$\begin{split} M^{\lambda}_{p}(a,b) &= ((1-\lambda)a^{p}+\lambda b^{p})^{\frac{1}{p}} & \text{if } p \notin \{-\infty,0,+\infty\} \\ M^{\lambda}_{-\infty}(a,b) &= \min(a,b) \\ M^{\lambda}_{0}(a,b) &= a^{1-\lambda}b^{\lambda} \\ M^{\lambda}_{+\infty}(a,b) &= \max(a,b). \end{split}$$

Let $A, B \subset \mathbb{R}^n$ be convex sets, let $\lambda \in [0, 1]$, and $p \in [-\infty, +\infty]$. We define their L^p -Minkowski sum by

$$(1-\lambda)\cdot A+_{\rho}\lambda\cdot B=\{x\in\mathbb{R}^n:\langle x,u\rangle\leq M^{\lambda}_{\rho}(h_A(u),h_B(u)),\text{ for all }u\in S^{n-1}\}.$$

 $(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^{\lambda}(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^{\lambda}(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$$

$$(1-\lambda)\cdot A+_{\rho}\lambda\cdot B=\{x\in\mathbb{R}^{n}:\langle x,u\rangle\leq M_{\rho}^{\lambda}(h_{A}(u),h_{B}(u)),\text{ for all }u\in S^{n-1}\}.$$
L^p-Minkowski sum:

$$(1-\lambda)A + \lambda B = \{x \in \mathbb{R}^n : \langle x, u \rangle \le M_1^\lambda(h_A(u), h_B(u)), \text{ for all } u \in S^{n-1}\}$$

$$(1-\lambda)\cdot A+_{\rho}\lambda\cdot B=\{x\in\mathbb{R}^{n}:\langle x,u\rangle\leq M_{\rho}^{\lambda}(h_{A}(u),h_{B}(u)),\text{ for all }u\in S^{n-1}\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Remark

$$\textit{For every } p \geq q, \quad (1-\lambda) \cdot A +_{\rho} \lambda \cdot B \supset (1-\lambda) \cdot A +_{q} \lambda \cdot B.$$

Conjecture (log-Brunn-Minkowski inequality (2012))

Conjecture (log-Brunn-Minkowski inequality (2012))

Let $A, B \subset \mathbb{R}^n$ be symmetric convex sets and let $\lambda \in [0, 1]$. Then,

 $|(1-\lambda)\cdot A+_0\lambda\cdot B|\geq |A|^{1-\lambda}|B|^{\lambda}.$

Conjecture (log-Brunn-Minkowski inequality (2012))

Let $A, B \subset \mathbb{R}^n$ be symmetric convex sets and let $\lambda \in [0, 1]$. Then,

$$|(1-\lambda)\cdot A+_0\lambda\cdot B|\geq |A|^{1-\lambda}|B|^{\lambda}.$$

Theorem (Böröczky, Lutwak, Yang and Zhang (2012))

The log-Brunn-Minkowski conjecture holds in \mathbb{R}^2 .

Conjecture (log-Brunn-Minkowski inequality (2012))

Let $A, B \subset \mathbb{R}^n$ be symmetric convex sets and let $\lambda \in [0, 1]$. Then,

 $|(1-\lambda)\cdot A+_0\lambda\cdot B|\geq |A|^{1-\lambda}|B|^{\lambda}.$

Theorem (Böröczky, Lutwak, Yang and Zhang (2012))

The log-Brunn-Minkowski conjecture holds in \mathbb{R}^2 .

Theorem (Saroglou (2014))

The log-Brunn-Minkowski conjecture holds in \mathbb{R}^n in the unconditional case.

イロト イ理ト イヨト イヨト

3

The log-Brunn-Minkowski inequality for Lebesgue measure is equivalent to the log-Brunn-Minkowski inequality for symmetric log-concave measure.

The log-Brunn-Minkowski inequality for Lebesgue measure is equivalent to the log-Brunn-Minkowski inequality for symmetric log-concave measure.

As the result, the inequality

$$\mu((1-\lambda)\cdot A+_0\lambda\cdot B)\geq \mu(A)^{1-\lambda}\mu(B)^{\lambda}$$

holds

The log-Brunn-Minkowski inequality for Lebesgue measure is equivalent to the log-Brunn-Minkowski inequality for symmetric log-concave measure.

As the result, the inequality

$$\mu((1-\lambda)\cdot A+_0\lambda\cdot B)\geq \mu(A)^{1-\lambda}\mu(B)^{\lambda}$$

holds for symmetric log-concave measure μ and symmetric convex sets A, B in \mathbb{R}^2 ;

The log-Brunn-Minkowski inequality for Lebesgue measure is equivalent to the log-Brunn-Minkowski inequality for symmetric log-concave measure.

As the result, the inequality

$$\mu((1-\lambda)\cdot A+_0\lambda\cdot B)\geq \mu(A)^{1-\lambda}\mu(B)^{\lambda}$$

holds for symmetric log-concave measure μ and symmetric convex sets A, B in \mathbb{R}^2 ; and for unconditional log-concave measure μ and unconditional convex sets A, B in \mathbb{R}^n .

Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

 Let μ be a measure on R² with an even log-concave density. Then μ satisfies the Brunn-Minkowski inequality in the class of symmetric convex sets in R².

Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

- Let μ be a measure on R² with an even log-concave density. Then μ satisfies the Brunn-Minkowski inequality in the class of symmetric convex sets in R².
- 2 Let μ be an unconditional log-concave measure on ℝⁿ. Then μ satisfies the Brunn-Minkowski inequality in the class of unconditional convex sets in ℝⁿ.

Theorem (Livshyts, M., Nayar, Zvavitch (2015+))

- Let μ be a measure on R² with an even log-concave density. Then μ satisfies the Brunn-Minkowski inequality in the class of symmetric convex sets in R².
- 2 Let μ be an unconditional log-concave measure on ℝⁿ. Then μ satisfies the Brunn-Minkowski inequality in the class of unconditional convex sets in ℝⁿ.
- Let μ be an unconditional product measure with decreasing density. Then μ satisfies the Brunn-Minkowski inequality in the class of unconditional convex sets in Rⁿ.

$$\mu((1-\lambda)A+\lambda B) = \mu\left((1-p)\frac{1-\lambda}{1-p}A+p\frac{\lambda}{p}B\right)$$

$$\mu((1-\lambda)A+\lambda B) = \mu\left((1-p)\frac{1-\lambda}{1-p}A+p\frac{\lambda}{p}B\right)$$

$$\geq \mu\left((1-p)\cdot\left(\frac{1-\lambda}{1-p}A\right)+{}_0p\cdot\left(\frac{\lambda}{p}B\right)\right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Arnaud Marsiglietti

$$\mu((1-\lambda)A+\lambda B) = \mu\left((1-p)\frac{1-\lambda}{1-p}A+p\frac{\lambda}{p}B\right)$$

$$\geq \mu\left((1-p)\cdot\left(\frac{1-\lambda}{1-p}A\right)+{}_{0}p\cdot\left(\frac{\lambda}{p}B\right)\right)$$

$$= \mu\left(\left[\left(\frac{1-\lambda}{1-p}\right)^{1-p}\left(\frac{\lambda}{p}\right)^{p}\right](1-p)\cdot A+{}_{0}p.B\right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$\mu((1-\lambda)A+\lambda B) = \mu\left((1-p)\frac{1-\lambda}{1-p}A+p\frac{\lambda}{p}B\right)$$

$$\geq \mu\left((1-p)\cdot\left(\frac{1-\lambda}{1-p}A\right)+{}_{0}p\cdot\left(\frac{\lambda}{p}B\right)\right)$$

$$= \mu\left(\left[\left(\frac{1-\lambda}{1-p}\right)^{1-p}\left(\frac{\lambda}{p}\right)^{p}\right](1-p)\cdot A+{}_{0}p.B\right)$$

$$\geq \left[\left(\frac{1-\lambda}{1-p}\right)^{1-p}\left(\frac{\lambda}{p}\right)^{p}\right]^{n}\mu((1-p)\cdot A+{}_{0}p.B)$$

Proof:

$$\mu((1-\lambda)A+\lambda B) \geq \left[\left(\frac{1-\lambda}{1-p}\right)^{1-p}\left(\frac{\lambda}{p}\right)^{p}\right]^{n}\mu((1-p)\cdot A+_{0}p.B)$$

Proof:

$$egin{aligned} & \mu((1-\lambda)A+\lambda B) & \geq & \left[\left(rac{1-\lambda}{1-p}
ight)^{1-p}\left(rac{\lambda}{p}
ight)^p
ight]^n \mu((1-p)\cdot A+_0p.B) \ & \geq & \left[\left(rac{1-\lambda}{1-p}
ight)^{1-p}\left(rac{\lambda}{p}
ight)^p
ight]^n \mu(A)^{1-p}\mu(B)^p. \end{aligned}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Arnaud Marsiglietti

Proof:

$$egin{aligned} & \mu((1-\lambda)A+\lambda B) & \geq & \left[\left(rac{1-\lambda}{1-p}
ight)^{1-p}\left(rac{\lambda}{p}
ight)^p
ight]^n \mu((1-p)\cdot A+_0p.B) \ & \geq & \left[\left(rac{1-\lambda}{1-p}
ight)^{1-p}\left(rac{\lambda}{p}
ight)^p
ight]^n \mu(A)^{1-p}\mu(B)^p. \end{aligned}$$

Optimizing in $p \in (0, 1)$, i.e. taking

$$\rho = \frac{\lambda \mu(B)^{1/n}}{(1-\lambda)\mu(A)^{1/n} + \lambda \mu(B)^{1/n}}$$
(1)

▲□▶ ▲圖▶ ▲厘▶

< ≣ >

yields

$$\mu((1-\lambda)A+\lambda B)^{1/n} \geq (1-\lambda)\mu(A)^{1/n}+\lambda\mu(B)^{1/n}$$

As a consequence:

Theorem (Livshyts, M., Nayar, Zvavitch)

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \ge (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

< ≣ >

holds when:

- $A, B \subset \mathbb{R}^2$ are symmetric convex sets in the plane,
- 2 $A, B \subset \mathbb{R}^n$ are unconditional convex sets in \mathbb{R}^n .

- Let μ be a measure on R² with an even log-concave density. Then μ satisfies the Brunn-Minkowski inequality in the class of symmetric convex sets in R².
- 2 Let μ be an unconditional log-concave measure on ℝⁿ. Then μ satisfies the Brunn-Minkowski inequality in the class of unconditional convex sets in ℝⁿ.
- Let μ be an unconditional product measure with decreasing density. Then μ satisfies the Brunn-Minkowski inequality in the class of unconditional convex sets in Rⁿ.

Arnaud Marsiglietti

Fix $\lambda, p \in (0, 1)$. Suppose that m, f, g are unconditional decreasing non-negative functions and let μ be an unconditional product measure with decreasing density on \mathbb{R}^n .

Fix $\lambda, p \in (0, 1)$. Suppose that m, f, g are unconditional decreasing non-negative functions and let μ be an unconditional product measure with decreasing density on \mathbb{R}^n . Assume that for any $x, y \in \mathbb{R}^n$ we have

$$m((1-\lambda)x+\lambda y) \geq f(x)^{1-p}g(y)^p.$$

Fix $\lambda, p \in (0, 1)$. Suppose that m, f, g are unconditional decreasing non-negative functions and let μ be an unconditional product measure with decreasing density on \mathbb{R}^n . Assume that for any $x, y \in \mathbb{R}^n$ we have

$$m((1-\lambda)x+\lambda y) \geq f(x)^{1-p}g(y)^{p}.$$

Then

$$\int m \, \mathrm{d}\mu \geq \left[\left(\frac{1-\lambda}{1-p} \right)^{1-p} \left(\frac{\lambda}{p} \right)^{p} \right]^{n} \left(\int f \, \mathrm{d}\mu \right)^{1-p} \left(\int g \, \mathrm{d}\mu \right)^{p}.$$

(日)(四)(四)(四)(四)(四))

Arnaud Marsiglietti

Theorem (Prékopa-Leindler inequality)

Theorem (Prékopa-Leindler inequality)

Let $\lambda \in [0,1]$ and $f, g, h : \mathbb{R}^n \to [0, +\infty)$ be measurable functions. If the inequality

$$h((1-\lambda)x+\lambda y) \ge f(x)^{1-\lambda}g(y)^{\lambda}$$

holds for every $x \in \text{supp}(f)$, $y \in \text{supp}(g)$, then

$$\int h \geq \left(\int f\right)^{1-\lambda} \left(\int g\right)^{\lambda}.$$

Theorem (Prékopa-Leindler inequality)

Let $\lambda \in [0,1]$ and $f, g, h : \mathbb{R}^n \to [0, +\infty)$ be measurable functions. If the inequality

$$h((1-\lambda)x+\lambda y) \ge f(x)^{1-\lambda}g(y)^{\lambda}$$

holds for every $x \in \text{supp}(f)$, $y \in \text{supp}(g)$, then

$$\int h \geq \left(\int f\right)^{1-\lambda} \left(\int g\right)^{\lambda}.$$

 \rightarrow (Almost) Yields the Brunn-Minkowski inequality by taking indicator of sets ($f = 1_A$, $g = 1_B$, $h = 1_{(1-\lambda)A+\lambda B}$).

Theorem (Borell-Brascamp-Lieb inequality)

Theorem (Borell-Brascamp-Lieb inequality)

Let $\gamma \ge -\frac{1}{n}$, $\lambda \in [0, 1]$ and $f, g, h : \mathbb{R}^n \to [0, +\infty)$ be measurable functions. If the inequality

$$h((1-\lambda)x+\lambda y)\geq M_{\gamma}^{\lambda}(f(x),g(y))$$

holds for every $x \in \text{supp}(f)$, $y \in \text{supp}(g)$, then

$$\int h \geq M_{\frac{\gamma}{1+\gamma n}}^{\lambda}\left(\int f,\int g\right).$$

▶ < 프 > < 프 > ...

æ

Theorem (Borell-Brascamp-Lieb inequality)

Let $\gamma \ge -\frac{1}{n}$, $\lambda \in [0, 1]$ and $f, g, h : \mathbb{R}^n \to [0, +\infty)$ be measurable functions. If the inequality

$$h((1-\lambda)x+\lambda y)\geq M_{\gamma}^{\lambda}(f(x),g(y))$$

holds for every $x \in \text{supp}(f)$, $y \in \text{supp}(g)$, then

$$\int h \geq M_{\frac{\gamma}{1+\gamma n}}^{\lambda}\left(\int f,\int g\right).$$

 \rightarrow (Exactly) Yields the Brunn-Minkowski inequality by taking indicator of sets and $\gamma=+\infty.$

イロト イ理ト イヨト イヨト

3

Theorem (geometric Prékopa-Leindler inequality)

Theorem (geometric Prékopa-Leindler inequality)

Let $\lambda \in [0,1]$ and $f, g, h : [0, +\infty)^n \to [0, +\infty)$ be measurable functions. If the inequality

$$h(x^{1-\lambda}y^{\lambda}) \geq f(x)^{1-\lambda}g(y)^{\lambda}$$

holds for every $x, y \in [0, +\infty)^n$, then

$$\int_{[0,+\infty)^n} h \geq \left(\int_{[0,+\infty)^n} f\right)^{1-\lambda} \left(\int_{[0,+\infty)^n} g\right)^{\lambda}.$$

▶ < 토▶ < 토▶ -

Theorem (geometric Prékopa-Leindler inequality)

Let $\lambda \in [0,1]$ and $f, g, h : [0, +\infty)^n \to [0, +\infty)$ be measurable functions. If the inequality

$$h(x^{1-\lambda}y^{\lambda}) \geq f(x)^{1-\lambda}g(y)^{\lambda}$$

holds for every $x, y \in [0, +\infty)^n$, then

$$\int_{[0,+\infty)^n} h \geq \left(\int_{[0,+\infty)^n} f\right)^{1-\lambda} \left(\int_{[0,+\infty)^n} g\right)^{\lambda}.$$

▶ < 토▶ < 토▶ -
Theorem (nonlinear extension of the Brunn-Minkowski inequality)

▲ロ▶▲圖▶▲臣▶▲臣▶ 臣 のQC

Arnaud Marsiglietti

Theorem (nonlinear extension of the Brunn-Minkowski inequality)

Let $\mathbf{p} = (p_1, \dots, p_n) \in [0, 1]^n$, $\gamma \ge -(\sum_{i=1}^n p_i^{-1})^{-1}$, $\lambda \in [0, 1]$, and $f, g, h : [0, +\infty)^n \to [0, +\infty)$ be measurable functions. If the inequality

$$h(M_{\mathbf{p}}^{\lambda}(x,y)) \geq M_{\gamma}^{\lambda}(f(x),g(y))$$

holds for every $x \in \text{supp}(f), y \in \text{supp}(g)$, then

$$\int_{[0,+\infty)^n} h \ge M^{\lambda}_{(\sum_{i=1}^n p_i^{-1} + \gamma^{-1})^{-1}} \left(\int_{[0,+\infty)^n} f, \int_{[0,+\infty)^n} g \right).$$

▶ 《注▶ 《注▶ …

・ロト・日本・モート 中国・シック

Arnaud Marsiglietti

Theorem (Borell inequality (1974))

Theorem (Borell inequality (1974))

Let $f, g, h : \mathbb{R}^n \to [0, +\infty)$ be measurable functions. Let $\varphi = (\varphi_1, \dots, \varphi_n) : \operatorname{supp}(f) \times \operatorname{supp}(g) \to \mathbb{R}^n$ be a continuously differentiable function with positive partial derivatives, such that $\varphi_k(x, y) = \varphi_k(x_k, y_k)$ for every $x = (x_1, \dots, x_n) \in \operatorname{supp}(f)$, $y = (y_1, \dots, y_n) \in \operatorname{supp}(g)$. Let $\Phi : [0, +\infty) \times [0, +\infty) \to [0, +\infty)$ be a continuous function, homogeneous of degree 1 and increasing in each variable. If the inequality

$$h(\varphi(x,y))\Pi_{k=1}^{n}\left(\frac{\partial\varphi_{k}}{\partial x_{k}}\rho_{k}+\frac{\partial\varphi_{k}}{\partial y_{k}}\eta_{k}\right)\geq\Phi(f(x)\Pi_{k=1}^{n}\rho_{k},g(y)\Pi_{k=1}^{n}\eta_{k})$$

holds for every $x \in \text{supp}(f)$, for every $y \in \text{supp}(g)$, for every $\rho_1, \ldots, \rho_n > 0$ and for every $\eta_1, \ldots, \eta_n > 0$, then

$$\int h \ge \Phi\left(\int f, \int g\right)$$

[Sketch of proof]

By induction on the dimension (the inequality tensorizes). To prove the inequality in dimension 1, we use a mass transportation technique:

[Sketch of proof]

By induction on the dimension (the inequality tensorizes). To prove the inequality in dimension 1, we use a mass transportation technique:

We may assume that $\int f = \int g = 1$, and that f, g are compactly supported positive Lipschitz functions.

[Sketch of proof]

By induction on the dimension (the inequality tensorizes). To prove the inequality in dimension 1, we use a mass transportation technique:

We may assume that $\int f = \int g = 1$, and that f, g are compactly supported positive Lipschitz functions. Thus there exists a non-decreasing map $T : \operatorname{supp}(f) \to \operatorname{supp}(g)$ such that for every $x \in \operatorname{supp}(f)$,

$$f(x) = g(T(x))T'(x).$$

$$\int h(z) dz \geq \int_{\operatorname{supp}(f)} h(\varphi(x, T(x))) \left(\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} T'(x) \right) dx$$

$$\int h(z) dz \geq \int_{\operatorname{supp}(f)} h(\varphi(x, T(x))) \left(\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} T'(x) \right) dx$$
$$\geq \int_{\operatorname{supp}(f)} \Phi(f(x), g(T(x))) T'(x)) dx$$

$$\int h(z)dz \geq \int_{\operatorname{supp}(f)} h(\varphi(x,T(x))) \left(\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y}T'(x)\right) dx$$

$$\geq \int_{\operatorname{supp}(f)} \Phi(f(x),g(T(x))T'(x))dx$$

$$= \int \Phi(f(x),f(x))dx.$$

$$\int h(z)dz \geq \int_{\operatorname{supp}(f)} h(\varphi(x,T(x))) \left(\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y}T'(x)\right) dx$$

$$\geq \int_{\operatorname{supp}(f)} \Phi(f(x),g(T(x))T'(x))dx$$

$$= \int \Phi(f(x),f(x))dx.$$

Using homogeneity of Φ , one deduces that

$$\int h \ge \Phi(1,1) \int f(x) \mathrm{d}x = \Phi\left(\int f, \int g\right).$$

- 10 €

Recall that:

Theorem (Saroglou (2014))

The log-Brunn-Minkowski conjecture holds in \mathbb{R}^n in the unconditional case.

Recall that:

Theorem (Saroglou (2014))

The log-Brunn-Minkowski conjecture holds in \mathbb{R}^n in the unconditional case.

Saroglou's proof tells us that the geometric prekopa-Leindler inequality implies the log-Brunn-Minkowski inequality for unconditional sets.

geometric-PL \Longrightarrow log-BM for unconditional sets

The log-BM for convex measures:

The log-BM for convex measures:

Conjecture (M. (2015))

Let $p \in [0, 1]$. Let μ be a symmetric measure in \mathbb{R}^n that has an α -concave density function, with $\alpha \ge -\frac{p}{n}$. Then for every symmetric convex set $A, B \subset \mathbb{R}^n$ and for every $\lambda \in [0, 1]$,

$$\mu((1-\lambda)\cdot A+_{\rho}\lambda\cdot B)\geq M^{\lambda}_{\left(\frac{n}{\rho}+\frac{1}{\alpha}\right)^{-1}}(\mu(A),\mu(B)).$$

The log-BM for convex measures:

Conjecture (M. (2015))

Let $p \in [0, 1]$. Let μ be a symmetric measure in \mathbb{R}^n that has an α -concave density function, with $\alpha \ge -\frac{p}{n}$. Then for every symmetric convex set $A, B \subset \mathbb{R}^n$ and for every $\lambda \in [0, 1]$,

$$\mu((1-\lambda)\cdot A+_{p}\lambda\cdot B)\geq M^{\lambda}_{\left(\frac{n}{p}+\frac{1}{\alpha}\right)^{-1}}(\mu(A),\mu(B)).$$

Recall that

$$(1-\lambda)\cdot A+_{\rho}\lambda\cdot B=\{x\in\mathbb{R}^n:\langle x,u\rangle\leq M_{\rho}^{\lambda}(h_{A}(u),h_{B}(u)),\text{ for all }u\in S^{n-1}\}.$$

If α or p is equal to 0, then $(n/p + 1/\alpha)^{-1}$ is defined by continuity and is equal to 0. The log-Brunn-Minkowski conjecture is obtained by taking μ to be Lebesgue measure and p = 0.

Theorem (M. 20++)

If the log-Brunn-Minkowski inequality for Lebesgue measure holds then the inequality

$$\mu((1-\lambda)\cdot A+_{\rho}\lambda\cdot B)\geq M^{\lambda}_{\left(\frac{n}{\rho}+\frac{1}{\alpha}\right)^{-1}}(\mu(A),\mu(B)).$$

holds for every symmetric measure μ that has an α -concave density function, with $\alpha \ge -\frac{p}{n}$, and for all symmetric convex sets $A, B \subset \mathbb{R}^n$.

 $BM \implies PL$ (Folk.)

- $\mathsf{BM} \implies \mathsf{PL} \ (\mathsf{Folk.})$
 - \implies geometric-PL (Ball 1988)

- $BM \implies PL$ (Folk.)
 - \implies geometric-PL (Ball 1988)
 - \implies log-BM for unconditional sets (Saroglou 2014)

▶ < 프 ▶ < 프 ▶</p>

- $BM \implies PL$ (Folk.)
 - \implies geometric-PL (Ball 1988)
 - \implies log-BM for unconditional sets (Saroglou 2014)
 - ⇒ gaussian-BM unconditional (Livshyts, M., Nayar, Zvavitch 2015-

글 🕨 🖌 글 🕨

- $BM \implies PL$ (Folk.)
 - \implies geometric-PL (Ball 1988)
 - \implies log-BM for unconditional sets (Saroglou 2014)

▶ < 프 ▶ < 프 ▶</p>

$$\implies r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x) \ge r\gamma_n^+(\partial(rB_2^n)) + \int_{rB_2^n} |x|^2 \mathrm{d}\gamma_n(x)$$

for unconditional sets $A \subset \mathbb{R}^n$ such that $\gamma_n(A) = \gamma_n(rB_2^n)$.

- $BM \implies PL$ (Folk.)
 - \implies geometric-PL (Ball 1988)
 - \implies log-BM for unconditional sets (Saroglou 2014)

イロト イ理ト イヨト イヨト

3

$$\implies r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x) \ge r\gamma_n^+(\partial(rB_2^n)) + \int_{rB_2^n} |x|^2 \mathrm{d}\gamma_n(x)$$

for unconditional sets $A \subset \mathbb{R}^n$ such that $\gamma_n(A) = \gamma_n(rB_2^n)$.

<u>Conclusion:</u> In the unconditional case, the Brunn-Minkowski inequality is very strong!

In the symmetric case, the log-Brunn-Minkowski inequality is very strong!

In the symmetric case, the log-Brunn-Minkowski inequality is very strong!

log-BM \implies gaussian-BM (Livshyts, M., Nayar, Zvavitch 2015+)

→ < ∃ →</p>

In the symmetric case, the log-Brunn-Minkowski inequality is very strong!

$$\begin{array}{rcl} \text{log-BM} & \Longrightarrow & \text{gaussian-BM} & (\text{Livshyts, M., Nayar, Zvavitch 2015+}) \\ & \implies & r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x) \geq r\gamma_n^+(\partial(rB_2^n)) + \int_{rB_2^n} |x|^2 \mathrm{d}\gamma_n(x) \end{array}$$

글 🕨 🖌 글 🕨

for symmetric sets $A \subset \mathbb{R}^n$ such that $\gamma_n(A) = \gamma_n(rB_2^n)$.

In the symmetric case, the log-Brunn-Minkowski inequality is very strong!

$$\begin{array}{rcl} \text{log-BM} & \Longrightarrow & \text{gaussian-BM} & (\text{Livshyts, M., Nayar, Zvavitch 2015+}) \\ & \implies & r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x) \geq r\gamma_n^+(\partial(rB_2^n)) + \int_{rB_2^n} |x|^2 \mathrm{d}\gamma_n(x) \end{array}$$

글 🕨 🖌 글 🕨

for symmetric sets $A \subset \mathbb{R}^n$ such that $\gamma_n(A) = \gamma_n(rB_2^n)$.

Conjecture (1)

The inequality

$$|(1-\lambda) \cdot A +_0 \lambda \cdot B| \ge |A|^{1-\lambda} |B|^{\lambda}$$

holds for every symmetric convex set $A, B \subset \mathbb{R}^n$, $n \geq 3$.

Conjecture (1)

The inequality

$$|(1-\lambda)\cdot A+_0\lambda\cdot B|\geq |A|^{1-\lambda}|B|^\lambda$$

holds for every symmetric convex set $A, B \subset \mathbb{R}^n$, $n \geq 3$.

Conjecture (2)

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \geq (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

æ

holds for every symmetric convex set $A, B \subset \mathbb{R}^n$, $n \geq 3$.

Conjecture (1)

The inequality

$$|(1-\lambda)\cdot A+_0\lambda\cdot B|\geq |A|^{1-\lambda}|B|^\lambda$$

holds for every symmetric convex set $A, B \subset \mathbb{R}^n$, $n \geq 3$.

Conjecture (2)

The inequality

$$\gamma_n((1-\lambda)A+\lambda B)^{1/n} \geq (1-\lambda)\gamma_n(A)^{1/n}+\lambda\gamma_n(B)^{1/n}$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

æ

holds for every symmetric convex set $A, B \subset \mathbb{R}^n$, $n \geq 3$.

Conjecture (3)

The inequality

$$r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x) \ge r\gamma_n^+(\partial(rB_2^n)) + \int_{rB_2^n} |x|^2 \mathrm{d}\gamma_n(x)$$

3

イロト イポト イヨト イヨト

holds for every symmetric convex set $A \subset \mathbb{R}^n$, $n \ge 3$, such that $\gamma_n(A) = \gamma_n(rB_2^n)$.

Conjecture (3)

The inequality

$$r\gamma_n^+(\partial A) + \int_A |x|^2 \mathrm{d}\gamma_n(x) \ge r\gamma_n^+(\partial(rB_2^n)) + \int_{rB_2^n} |x|^2 \mathrm{d}\gamma_n(x)$$

3

イロト イポト イヨト イヨト

holds for every symmetric convex set $A \subset \mathbb{R}^n$, $n \ge 3$, such that $\gamma_n(A) = \gamma_n(rB_2^n)$.

・ロト・日本・モート 中国・シック

Arnaud Marsiglietti

Thank you for your attention !!!