1 Preliminaries (more or less mentioned in the previous lecture)

We consider a state space K and a σ-algebra A on the subsets of K. For $u \in K$ and $A \in A$, let $P_u(A)$ be the "one-step probability", which tells us the probability of being in A after taking one step from u. We have a starting distribution Q_0 on K which gives us a probability $Q_0(A)$ of starting in the set $A \in A$.

With this setup, a Markov chain is a sequence of points w_0, w_1, w_2, \ldots such that $P(w_0 \in A) = Q_0(A)$ and

$$P(w_{i+1} \in A | w_0, \ldots, w_i) = P(w_{i+1} \in A | w_i) = P_{w_i}(A),$$

for each $A \in A$. A distribution Q is called stationary if, for each $A \in A$,

$$Q(A) = \int_K P_u(A) \, dQ(u).$$

The Markov chain is called time reversible if, for each $A, B \in A$,

$$Q(A) \int_A P_u(B) \, dQ(u) = Q(B) \int_B P_u(A) \, dQ(u).$$

For any $A \in A$, the ergodic flow $\Phi(A)$ is the probability of transitioning from A to $K \setminus A$,

$$\Phi(A) = \int_A P_u(K \setminus A) \, dQ(u).$$

We define, for each $A \in A$,

$$\phi(A) = \frac{\Phi(A)}{\min\{Q(A), Q(K \setminus A)\}}.$$

Then the conductance of K is $\phi = \min_{A \subset K} \phi(A)$, where Q is a stationary distribution.

Now let $K = K$ be a convex body in \mathbb{R}^n and A the set of measurable subsets of K. The local conductance at $u \in K$ is

$$\ell(u) = 1 - P_u(u) = \frac{\text{vol}(u + \delta B_n) \cap K)}{\text{vol}(\delta B_n)}.$$

We have seen that the conductance of the ball walk in K can be exponentially small. We can bypass this problem by defining the α-extension of K, $K' = K + \alpha B_n$. Then for $\alpha > 2\delta \sqrt{n}$ we have $\ell(u) \geq 1/8$, for every $u \in K'$.
If Q_t is the distribution of the i-th step of the random walk, set
\[d_{TV}(Q_t, Q) = \sup_{A \in \mathcal{A}} (Q_t(A) - Q(A)) \]
and
\[M(Q_t, Q) = \sup_{A \in \mathcal{A}} \frac{Q_t(A)}{Q(A)}. \]
The following theorem was proved in lecture 4.

Theorem 1.1.
\[d_{TV}(Q_t, Q) \leq \sqrt{M(Q_0, Q)} (1 - \phi^2/2)^t. \]

We want to prove that the random walk we defined is rapidly mixing, that is, that conductance ϕ is bounded from below by an inverse polynomial in the dimension. Specifically, our goal is to prove

Theorem 1.2. If $D = \text{diam}(K)$ and for every $u \in K$ the local conductance of the ball walk with δ steps is at least ℓ, then
\[\phi \geq \frac{\ell^2 \delta}{16 \sqrt{\pi D}}. \]

Proof. Consider an arbitrary measurable $S_1 \subseteq K$ and set $S_2 = K \setminus S_1$. We will prove that
\[\Phi(S_1) = \int_{S_1} P_u(S_2) dQ(u) \geq \frac{\ell^2 \delta}{16 \sqrt{\pi D}} \cdot \min\{\text{vol}(S_1), \text{vol}(S_2)\} \]
Observe that, since the distribution Q is stationary, we have
\[\int_{S_1} P_u(S_2) dQ(u) = \int_{S_2} P_u(S_1) dQ(u). \]
Next we define the sets
\[S'_1 = \{u \in S_1 : P_u(S_2) < \ell/4\}, \]
\[S'_2 = \{u \in S_2 : P_u(S_1) < \ell/4\} \]
and
\[S'_3 = K \setminus (S'_1 \cup S'_2). \]
Then
\[\int_{S_1} P_u(S_2) dQ(u) = \frac{1}{2} \left(\int_{S_1} P_u(S_2) dQ(u) + \int_{S_2} P_u(S_1) dQ(u) \right) \geq \frac{1}{2} \int_{S'_3} \frac{\ell}{4} dQ(u). \]

We have thus proved that $\Phi(S_1) \geq \ell/8 \cdot Q(S'_3)$. We will see how we derive the wanted result from the following theorem, a variant of which will be proved in the next section.
Theorem 1.3. Given a partition \(\{S'_1, S'_2, S'_3\} \) of a convex body \(K \) in \(\mathbb{R}^n \),

\[
Q(S'_3) \geq \frac{2}{D} d(S'_1, S'_2) \cdot \min\{Q(S'_1), Q(S'_2)\},
\]

where \(D = \text{diam}(K) \), and \(d(S'_1, S'_2) \) the usual Euclidean distance between the sets \(S'_1, S'_2 \).

We will also use the fact that \(S'_1 \) and \(S'_2 \) are ”far apart”. The following Lemma was proved in Lecture 4.

Lemma 1.4. Let \(u, v \in K \), such that \(\ell(u), \ell(v) \geq \ell \). Then

\[
\|u - v\| \leq \frac{t\delta}{\sqrt{n}} \Rightarrow d_{TV}(P_u, P_v) \leq t + 1 - \ell.
\]

Now let \(v \in S'_1, u \in S'_2 \). By Lemma 1.4 we have

\[
d_{TV}(P_u, P_v) > 1 - \frac{\ell}{2} \Rightarrow \|u - v\| \geq \frac{\ell\delta}{2\sqrt{n}}.
\]

Assume that \(Q(S'_i) < 1/2 \cdot Q(S_i) \). Then

\[
\int_{S_1} P_u(S_2) dQ(u) = \frac{\ell}{4} \int_{S_1 \setminus S_1} dQ(u) \geq \frac{\ell}{8} \text{vol}(S_1),
\]

which proves what was wanted. We are thus left with the case \(Q(S'_i) \geq 1/2 \cdot Q(S_i), i = 1, 2 \). Then, by Theorem 1.3

\[
\Phi(S_1) \geq \frac{\ell}{8} \cdot \frac{2}{D} \cdot \frac{\ell\delta}{2\sqrt{n}} \min\{Q(S'_1), Q(S'_2)\}
\]

\[
\geq \frac{\ell^2}{8} \cdot \frac{\delta}{D\sqrt{n}} \cdot \frac{1}{2} \min\{Q(S_1), Q(S_2)\},
\]

which implies that

\[
\phi \geq \frac{\ell^2\delta}{16D\sqrt{n}},
\]

concluding the proof of the Theorem.

Remarks 1.5. (i) The random walk mixing rate is of order \(O(1/\phi^2) \), so by Theorem 1.2 we have an upper bound \(O(n^4D^2) \).

(ii) Another method would be to bound the average local conductance \(\mathbb{E}_K(\ell(u)) \geq c \), so that, choosing \(\delta = c'/\sqrt{n} \), we would have a mixing rate of order \(O(n^2D^2) \).

(iii) By considering the example of a cylinder of height \(D \) and base radius 1, \(\delta = 1/\sqrt{n} \), we gain the bound \(\Omega(n^2D^2) \).
δ = \frac{1}{\sqrt{n}}

Figure 1: The example with the cylinder of height D and base radius 1.

\[S_1 \quad S_3 \quad S_2 \]

\[K \]

Figure 2: A partition of a convex body.

2 The localization lemma and an isoperimetric inequality

We now state and prove the isoperimetric inequality of Theorem 1.3 in the more general context of log-concave functions.

Theorem 2.1. Let \(f \) be a log-concave function, \(K := \text{supp}(f), D := \text{diam}(K) \), and \(\Pi_f \) the induced probability distribution. Then for any partition \(\{ S_1, S_2, S_3 \} \) of \(K \),

\[
\Pi_f(S_3) \geq \frac{2d(S_1, S_2)}{D} \min\{\Pi_f(S_1), \Pi_f(S_2)\}.
\]

We write \(\phi_f \) for the best constant \(c > 0 \) such that

\[
\Pi_f(S_3) \geq c \cdot \min\{\Pi_f(S_1), \Pi_f(S_2)\}.
\]

By a Theorem of Kannan, Lovász and Simonovits \([1]\), we have

\[
\phi_f \geq \frac{c}{\sqrt{\text{Var}f(\|X - X\|^2)}} = \frac{c}{\sqrt{\sum \lambda_i(A)}},
\]

where \(X = \text{Var}f(\|X - X\|^2) \), \(A \) is the covariance matrix of \(\Pi_f \) and \(\lambda_1(A) \geq \lambda_2(A) \geq \ldots \geq \lambda_n(A) \) the eigenvalues of \(A \). In the same paper, KLS prove the upper bound \(\phi_f \leq \frac{c}{\sqrt{\lambda_1(A)}} \) and conjecture that \(\phi_f \) is actually of the order \(\Theta(1/\sqrt{\lambda_1(A)}) \).

Conjecture 2.2 (Kanan, Lovász, Simonovits, \([1]\)).

\[
\phi_f \leq \frac{c}{\sqrt{\lambda_1(A)}}.
\]
We also formulate the following (weaker) conjecture, in terms of the Frobenius norm of A, which we discuss at the end of these notes.

Conjecture 2.3.

$$\phi_f \geq \frac{c}{(\sum \lambda_i(A)^2)^{1/4}} = \frac{c}{\sqrt{\|A\|_F}}.$$

We now proceed to the proof of our main result.

Proof of Theorem 2.1. Let $c = 2d(S_1, S_2)/D$ and suppose that $\{S_1, S_2, S_3\}$ is a partition of K such that

$$\int_{S_3} f < c \int_{S_1} f$$

and

$$\int_{S_3} f < c \int_{S_2} f,$$

or equivalently that $\int_{\mathbb{R}^n} g > 0$ and $\int_{\mathbb{R}^n} h > 0$, where

(1) $g(x) = \begin{cases} cf(x), & \text{if } x \in S_1 \\ 0, & \text{if } x \in S_2 \end{cases}$

and $h(x) = \begin{cases} cf(x), & \text{if } x \in S_2 \\ -f(x), & \text{if } x \in S_3 \end{cases}$

To prove the theorem, we reduce the assertion to the one-dimensional case, through the following localization lemma.

Lemma 2.4. Let $g, h : \mathbb{R}^n \to \mathbb{R}$ be lower semi-continuous integrable functions such that $\int_{\mathbb{R}^n} g > 0$ and $\int_{\mathbb{R}^n} h > 0$. Then there exist two points $a, b \in \mathbb{R}^n$ and an affine function ("needle") $l : [0, 1] \to \mathbb{R}_+$ such that

$$\int_0^1 l(t)^{n-1} g((1-t)a+tb) dt > 0$$

and

$$\int_0^1 l(t)^{n-1} h((1-t)a+tb) dt > 0.$$

Sketch of the Proof. The proof of the Lemma can be roughly divided into three steps.

Step 1. Let A be a $(n-2)$-dimensional affine subspace of \mathbb{R}^n. For each such
A, there is a halfspace H (bisecting halfspace) with A contained in its bounding hyperplane, such that

$$\int_H g = \frac{1}{2} \int_{\mathbb{R}^n} g,$$

while at the same time (replacing H by its complementary halfspace, if necessary)

$$\int_H g > 0 \quad \text{and} \quad \int_H h > 0.$$

Now let A_1, A_2, \ldots be a sequence of such $(n-2)$-dimensional subspaces with rational coordinates, and consider $K = K_0 \supseteq K_1 \supseteq K_2 \supseteq \ldots$ a respective sequence of convex bodies, where each K_{i+1} is obtained from K_i by cutting it into two by a bisecting hyperplane P_i through A_i, and choosing the appropriate half. Then $L = \bigcap_{i=1}^{\infty} K_i$ is at most 1-dimensional.

Step 2. Without loss of generality, let $a = o$ and $b = e_1$. Define

$$Z_t = \{x \in \mathbb{R}^n : x_1 = t\}.$$

By the Brunn-Minkowski inequality, for each $i = 1, 2, \ldots$ the function

$$\psi_i = \left(\frac{\text{vol}(K_i \cap Z_t)}{\text{vol}(K_i)}\right)^{\frac{1}{n-1}}$$

is concave. Moreover, $\psi_i(t) \leq n \frac{1}{s-t}$ and for each $0 \leq s \leq t \leq 1$,

$$\frac{s}{t} \psi_i(t) \leq \psi_i(s) \leq \frac{1-s}{1-t} \psi_i(t).$$

Thus there is a limiting concave function ψ such that

$$\int \psi_i(t)^{n-1} g \to \int \psi(t)^{n-1} g.$$

Since $\int \psi_i(t)^{n-1} g > 0$ for each $i = 1, 2, \ldots$, it follows that the assertion of the Lemma holds for the function ψ in the place of l.

Step 3. The final step in the proof is to obtain the affine function l from the concave function ψ of Step 2. The technical details were not presented in class.

To conclude the proof of the Theorem, we proceed as follows: Partition $[0, 1]$ into $\{Z_1, Z_2, Z_3\}$, where

$$Z_i = \{t \in [0, 1] : (1-t)a + tb \in S_i\}, \quad i = 1, 2, 3.$$

Apply Lemma 2.4 to the functions g, h of (4)\footnote{Actually the functions g and h as defined in (4) are not lower semi-continuous. However this can be achieved by expanding S_1 and S_2 slightly so as to make them open sets, and making the support of f an open set. Since we are proving strict inequalities, we do not lose anything by these modifications.}.
Rewriting g and h in terms of our original function f we get that
\[
\int_{Z_3} l(t)^{n-1} f((1 - t)a + tb) \, dt < c \int_{Z_1} l(t)^{n-1} f((1 - t)a + tb) \, dt
\]
and
\[
\int_{Z_3} l(t)^{n-1} f((1 - t)a + tb) \, dt < c \int_{Z_2} l(t)^{n-1} f((1 - t)a + tb) \, dt.
\]

The functions f and $l(\cdot)^{n-1}$ are both log-concave, so the same holds for their product $F(t) = l(t)^{n-1} f((1 - t)a + tb)$. We will have reached a contradiction as soon as we prove that
\[
\int_{Z_3} F \geq 2d(Z_1, Z_2) \cdot \min\{ \int_{Z_1} F, \int_{Z_2} F \}.
\]
Assume at first that Z_1, Z_3, Z_2 are successive intervals, and write u (resp. v) for the right (resp. left) endpoint of Z_1 (resp. Z_2), so that $d(Z_1, Z_2) = |u - v|$. Without loss of generality suppose that $F(u) \leq F(v)$. Then
\[
\int_{Z_1} F \geq F(u) \cdot |u - v| = |u - v| \cdot F(u) \cdot |1 - 0| \\
\geq |u - v| \cdot \int_{Z_1} F(u) \, dt \geq d(Z_1, Z_2) \cdot \int_{Z_1} F
\]
that proves our claim, disregarding the factor 2 (the full proof would require a little bit more of a struggle).

In the general setting, consider a maximal interval $(r, s) \subseteq Z_3$. Then, by our previous argument, the integral of F over Z_3 is at least c times the smaller of the integrals to its left $[0, r]$ and to its right $[s, 1]$. If all of Z_1 or Z_2 is contained in one of these intervals, we are done. If not, then set $U = [0, r] \cup [s, 1]$. Since Z_1, Z_2 are separated by at least $d(S_1, S_2)/D$, there is an interval of Z_3 of length $d(S_1, S_2)/D$ between $U \cap Z_1$ and $U \cap Z_2$. Repeating the process for this interval yields the required result.

Open problem 1. Given convex body $K \in \mathbb{R}^n$ for every distance function $d_x(y) = ||x - y||_{E_x}$ convex in $x \in K$ all hyperplane partitions are within constant of the optimum Ψ.

3 Hit-and-run

We now focus on the analysis of the hit-and-run random walk.

Theorem 3.1. For the hit-and-run random walk it holds $\Phi \leq \frac{c}{nD}$ staring from any point in a convex body K.

The following definition of the cross-ratio is used
\[
d_K(u, v) = \frac{|u - v| |p - q|}{|p - u| |v - q|} = (p : v : u : q)
\]
for the proof of the result. In what follows we list a set of results such as the localization lemma for hit-and-run without proofs. For more information see [3].
Theorem 3.2. It holds
\[\pi_f(s_3) \geq d_k(s_1, s_2) \min\{\pi_f(s_1), \pi_f(s_2)\} \]

Lemma 3.3. For \(0 \leq u \leq w\) it holds
\[\begin{align*}
(e^w - e^x) (e^w - 1) & \geq (v - u) w \\
(e^u - 1) (e^w - e^x) & \geq u (w - v)
\end{align*} \]

Theorem 3.4. For function \(h : K \to \mathbb{R}_+ \)
\[h(x) \leq \frac{1}{3} \min\{1, d_K(u, v)\} \]
for all \(u \in S_1, v \in S_2 \) and \(x \in \text{chord}(u, v) \).

Finally, for a \(S_1, S_2, S_3 \) partition of \(K \) it holds \(\pi(S_3) \geq E_K(h(x)) \pi(S_1) \pi(S_2) \).

4 Open problems

Open problem 2. Find simpler algorithms to round convex bodies. For example analyse the following
walk for 2T steps in \(K \)
1. compute the covariance matrix of the trace \(X_{\cdot 2T} \) of the walk
2. if exist an eigenvalue \(\lambda > 2 \)
 then make isotropic and goto 1
 else return \(K \)

Open problem 3. Analyse the coordinate directions hit-and-run. That is instead from picking a random direction from the unit ball pick a random direction from the set \(\{-e_i, e_i\}, \forall i \in [n] \).

Open problem 4. Given a polytope \(K := \{ x : Ax \leq b \} \subset \mathbb{R}^n \) is there any deterministic approximation algorithm that computes \((1 + \epsilon) \text{vol}(K) \) in time polynomial in \(n, 1/\epsilon \)?

Open problem 5. If the ball walk starts from \(E_K(x) \), does it mix in polynomial time?

Open problem 6. Is there any statistical tests that guarantees that the distribution \(Q_t \) is close to \(Q \)? Is the conductance \(E_{Q_t}(||X||^2) \) monotonically increasing?

References

