1 Integration

1.1 Computing the volume of a convex body

In this section, we are interested in designing an effective algorithm with the following inputs and outputs: Given

- a membership oracle for the convex body $K \subseteq \mathbb{R}^n$;
- $x_0 \in K$, $r, R > 0$ such that $x_0 + rB_n \subseteq K \subseteq RB_n$ (where B_n is the unit ball in dimension n); and
- $\varepsilon > 0$,

the algorithm gives V such that

$$(1 - \varepsilon)\text{Vol}(K) \leq V \leq (1 + \varepsilon)\text{Vol}(K).$$

Some exact formulas are known to calculate the volume of some simple convex bodies, namely, parallelepipeds, balls and simplices. Therefore, one can think of dividing the convex body K into some of these simple forms.

Naive algorithm 1 (for polytopes): Divide the polytope into simplices. *But the number of simplices needed to divide a polytope is exponential in terms of the dimension!*

Naive algorithm 2: Partition the convex body K by cubes of edge length δ (like a pixelisation). *But once again, there is an exponential number of cubes, and we need to call the membership oracle for each of them.*

Naive algorithm 3: Find an ellipsoid E such that $E \subseteq K \subseteq n^{3/2}E$ (this can be done in polynomial time). *But it only gives an n^n-approximation: $\text{Vol}(E) \leq \text{Vol}(K) \leq (n^{3/2})^n\text{Vol}(E)$.*

Actually, it has been proved that computing the volume is difficult:

Theorem 1 ([Ele86, BF87]). Let $a > 0$. For any deterministic algorithm that uses n^a (resp. $2^{2^{n^a}}$) oracle calls, and computes, for all convex body $K \in \mathbb{R}$, $A(K)$ and $B(K)$ such that $A(K) \leq \text{Vol}(K) \leq B(K)$, there exists a convex body K_0 such that

$$\frac{B(K_0)}{A(K_0)} \geq \left(\frac{\text{cst} \ n}{a \ln n}\right)^{n/2} \quad \text{(resp.} \quad \geq 2^{\text{cst} \ n}\text{).}$$

Proof. Assume that $K = B_n$ is the unit ball in dimension n. Assume that the algorithm has already done m oracle calls (and also assume that the m points were in fact inside K). For all $i \in \{1, \ldots, m\}$, we thus know that $x_i \in K = B_n$ and thus we know that the ball of diameter $[0, x_i]$, denote by $B^{(i)}$ is included in B_n. Moreover, for all $i \in \{1, \ldots, m\}$, we have that $\text{Vol}(B^{(i)}) \leq \frac{\text{Vol}(B_n)}{2^n}$ because the diameter of $B^{(i)}$ is at most half of the diameter of K. Therefore, $\text{Vol}\left(\bigcup_{i=1}^m B^{(i)}\right) \leq \frac{\text{Vol}(B)}{2^n}.$
To conclude the proof, it is enough to show that \(\text{conv}(x_1, \ldots, x_m) \subseteq \bigcup_{i=1}^{m} B^{(i)} \). Assume that \(y \in \text{conv}(x_1, \ldots, x_m) \) and \(y \notin \bigcup_{i=1}^{m} B^{(i)} \). This second assumption implies that, for all \(i \in \{1, \ldots, m\} \), the angle \((0, y, x_i) < \pi/2 \), which is contradiction with \(y \in \text{conv}(x_1, \ldots, x_m) \).

Therefore, after \(m \) oracle calls, we cannot get better than a \(2^n \) approximation, which concludes the proof.

Bárány and Füredi [BF87] also proved the following equivalent of Theorem 1: for all \(\alpha > 0 \), an algorithm with complexity \((1/\alpha)^n \) cannot give better than a \((1 + \alpha)^n \)-approximation. However, the following result holds:

Theorem 2 ([DV06]). There exists a deterministic algorithm that finds a \((1 + \alpha)^n \)-approximation with complexity \((1/\alpha)^O(n) \).

Random sampling then permits to obtain more efficient algorithms:

Theorem 3 ([DFK91]). For all \(\delta, \alpha > 0 \), there exists a randomised algorithm that computes, with probability \(1 - \delta \), a \((1 + \alpha)^n \)-approximation with polynomial complexity in \((n, \log R, 1/\alpha \log 1/\delta) \).

A naive randomised algorithm could be the following: take a ball \(B \) including the convex body \(K \), sample uniform random points in \(B \) and approximate the volume of \(K \) by the proportion of random points that belong to \(K \) times the volume of the ball \(B \). The problem is that almost all points won’t belong to \(K \).

The [DFK91] algorithm is the following: Assume that \(B_n \subseteq K \subseteq RB_n \). Let \(m = n \log_2 R \), and for all \(i \in \{1, \ldots, m\} \), define

\[
K_i = K \cap (2^{i/n} B_n).
\]

Note that

\[
\text{Vol}(K) = \text{Vol}(B_n) \prod_{i=1}^{m} \frac{\text{Vol}(K_i)}{\text{Vol}(K_{i-1})}.
\]

Then, for \(i \) from 1 to \(m \), sample \(k_i \) points in \(K_{i-1} \) and estimate \(\frac{\text{Vol}(K_i)}{\text{Vol}(K_{i-1})} \) by the proportion of points falling into \(K_i \). Multiply these estimates to get an approximation for \(\text{Vol}(K) \). Note that the estimation of \(\frac{\text{Vol}(K_i)}{\text{Vol}(K_{i-1})} \) by uniform random sampling works because \(\text{Vol}(K_i) \leq 2\text{Vol}(K_{i-1}) \).

To get the complexity, we need to know how many points are needed to get a good approximation at each step. By Tchbychev’s inequality, we know that \(\frac{m^2}{\alpha^2} \) points are enough to get a \((1 + \alpha) \)-approximation. Therefore, in total, we need \(\frac{m^3}{\alpha^2} = \frac{n^3 \log R}{\alpha^2} \) samples and oracle calls. But in fact,

Theorem 4 ([DFK91]). \(O\left(\frac{m^2}{\alpha^2}\right) \) samples suffice.
Proof. The idea of the proof is just the following: given Y_1, \ldots, Y_m m i.i.d. random variables, we have that
\[
\frac{\text{Var}(Y_1 \cdots Y_m)}{(E(Y_1 \cdots Y_m))^2} = \prod_{i=1}^{m} \left(1 + \frac{\text{Var}Y_i}{(EY_i)^2}\right) - 1 = \exp \left(m \cdot \frac{\text{Var}Y_1}{(EY_1)^2} \right) - 1.
\]
In our case, $\frac{\text{Var}Y_i}{(EY_i)^2} \sim \frac{\text{const}}{k_i}$ where k_i is the number of points drawn at step i. Thus, choosing $k_i = \frac{m}{\alpha^2}$ gives
\[
\frac{\text{Var}(Y_1 \cdots Y_m)}{(E(Y_1 \cdots Y_m))^2} \sim \frac{m^2}{\alpha^2},
\]
which concludes the proof by Tchebychev’s inequality.

This algorithm by Dyer, Frieze, and Kannan has inspired a wide literature, aiming at reducing its complexity. The original algorithm stated above uses the sample algorithm, of complexity $O(n^3)$, and has overall complexity equal to $O(n^{23})$. The table below lists the different improvements of this algorithm and their complexity:

<table>
<thead>
<tr>
<th>authors</th>
<th>complexity</th>
<th>main idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DFK91]</td>
<td>n^{23}</td>
<td></td>
</tr>
<tr>
<td>[LS90]</td>
<td>n^{16}</td>
<td>isoperimetry</td>
</tr>
<tr>
<td>[Lov90]</td>
<td>n^{10}</td>
<td>ball-walk</td>
</tr>
<tr>
<td>[DF88]</td>
<td>n^8</td>
<td></td>
</tr>
<tr>
<td>[LS92]</td>
<td>n^7</td>
<td>rounding + many tools</td>
</tr>
<tr>
<td>[KLS97]</td>
<td>n^5</td>
<td>isotropic positions</td>
</tr>
<tr>
<td>[LV06]</td>
<td>n^4</td>
<td>hit-and-run</td>
</tr>
<tr>
<td>[CV14]</td>
<td>n^3</td>
<td>Gaussian cooling</td>
</tr>
</tbody>
</table>

Surprisingly, a way to get a better complexity is to tackle a more complicated problem: namely the integration on a convex body.

1.2 Logconcave Integration

In the previous section, we computed the volume of a convex body K by constructing a sequence of bodies that converge to K, computing the volume change for each body. We now shift our focus from volume to integration, which can be viewed as a generalization of volume computation. We begin by formally stating the integration problem.

Problem 1. Given as input:

- A membership oracle to a convex body $K \subseteq \mathbb{R}^n$.
- A point $x_0 \in \mathbb{R}^n$ and a number $R \in \mathbb{R}$ such that $x_0 + B_n \subseteq K \subseteq R$.
- An oracle to a function $f : \mathbb{R}^n \rightarrow \mathbb{R}^+$ such that $\int_K f(x) \, dx < \infty$.
- An error parameter $\varepsilon > 0$.

Output a number V such that
\[
(1 - \varepsilon) \int_K f(x) \, dx \leq V \leq (1 + \varepsilon) \int_K f(x) \, dx.
\]

The approach we use for integration is similar to that of volume, where we use a sequence of functions that connect an “easy” function to our target function. For a sequence of functions $\{f_0, \ldots, f_m\}$ where each $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$, we rewrite $\int_K f(x) \, dx$ as
\[
\int_K f(x) \, dx = \int_K f_0(x) \, dx \cdot \frac{\int_K f_1(x) \, dx}{\int_K f_0(x) \, dx} \cdot \ldots \cdot \frac{\int_K f_m(x) \, dx}{\int_K f_m(x) \, dx}.
\]
We want \(f_0 \) to be a function which is easy to integrate over \(K \) (perhaps approximately), and then we want to estimate each integral ratio
\[
\frac{\int_K f_i(x) \, dx}{\int_K f_{i-1}(x) \, dx}.
\]

To estimate this ratio, sample a point \(X \) with density proportional to \(f_{i-1} \) and set \(Y = \frac{f_i(X)}{f_{i-1}(X)} \). The expectation of \(Y \) is the quantity we wish to estimate.

Claim 1. For \(Y \) and \(f_i \) as defined above,
\[
E(Y) = \frac{\int_K f_i(x) \, dx}{\int_K f_{i-1}(x) \, dx}.
\]

Proof. We have that
\[
E(Y) = \int_K \frac{f_i(x)}{f_{i-1}(x)} \cdot \frac{f_{i-1}(y)}{f_{i-1}(y)} \, dy = \frac{\int_K f_i(x) \, dx}{\int_K f_{i-1}(x) \, dx}.
\]

The function \(f_i \) should be “close” to \(f_{i-1} \), so that the ratio of the integrals will be easy to estimate within a target relative error (i.e. the variance \(E(Y^2)/E(Y)^2 \) should be bounded). We now sketch the algorithm.

\begin{verbatim}
Integrate(K, f, ε)
1. Compute (or estimate) \(\int_K f_0 \), call this quantity \(R_0 \).
2. For \(i = 1, \ldots, m \):
 (a) Compute an estimate \(R_i \) of the integral ratio \(\int_K f_i / \int_K f_{i-1} \).
3. Return \(R_0 R_1 \ldots R_m \) as the estimate for \(\int_K f \).
\end{verbatim}

Figure 2: General algorithm for integration

We now describe one way to select the sequence of functions \(\{f_0, \ldots, f_m\} \) based on the algorithm in [LV06]. Set \(f_i(x) = e^{-a_i \|x\|} \) and

- \(a_0 = 4n \)
- \(a_i = a_{i-1} \cdot (1 - 1/\sqrt{n}) \) for \(i = 1, \ldots, m - 1 \)
- \(a_m = ε/(2R) \).

The proof of the variance bound will use the following lemma about logconcave functions, whose proof is deferred to the end of the section.

Lemma 1 ([LV06]). If \(a > 0 \), \(Z(a) = a^n \int_K f(ax) \, dx \), and \(f : \mathbb{R}^n \to \mathbb{R} \) logconcave, then \(Z(a) \) is a logconcave function of \(a \).

Proof. (of Lemma 1) Define
\[
G(t, x) = \begin{cases}
1 & \text{if } t > 0 \text{ and } x \in tK \\
0 & \text{otherwise}
\end{cases}
\]
which is a logconcave function. Also define $F(t,x) = f(x) \cdot G(t,x)$. Since f,G are logconcave, F is also logconcave. Since F is logconcave, its marginal is logconcave. The marginal of F in t is

$$\int_{\mathbb{R}^n} f(x)G(x,t) \, dx = t^n \int_{K} f(tx) \, dx.$$

\[\square \]

Lemma 2 ([LV06]). Let $f_i = e^{-a_i \|x\|}$, $a_i = a_{i-1}(1 - 1/\sqrt{n})$, and X be a random sample with density proportional to f_{i-1}. Then, for $Y = f_i(X)/f_{i-1}(X)$, we have that

$$\frac{\mathbb{E}(Y^2)}{\mathbb{E}(Y)^2} \leq 4.$$

Proof. For convenience, define $F(a) = \int_K e^{-a \|x\|} \, dx$. From Claim 1, we have that

$$\mathbb{E}(Y) = \frac{F(a_i)}{F(a_{i+1})}.$$

We also derive the second moment:

$$\mathbb{E}(Y^2) = \int_K \left(\frac{f_i(x)}{f_{i-1}(x)} \right)^2 \cdot \frac{f_{i-1}(x)}{\int_K f_{i-1}(y) \, dy} \, dx = \frac{\int_K e^{-2a_i \|x\|}, e^{a_i-1 \|x\|} \, dx}{\int_K f_{i-1}(x) \, dx} F(a_{i-1}) = \frac{F(2a_i - a_{i-1})}{F(a_{i-1})}.$$

We therefore have that

$$\frac{\mathbb{E}(Y^2)}{\mathbb{E}(Y)^2} = \frac{F(2a_i - a_{i-1})F(a_{i-1})}{F(a_i)^2}.$$

Define $Z(a) = a^n F(a)$. By Lemma 1, we have that $Z(a)$ is a logconcave function of a. Therefore,

$$\frac{Z(2a_i - a_{i-1})Z(a_{i-1})}{Z(a_i)^2} \leq 1,$$

which after rearranging terms gives

$$\frac{\mathbb{E}(Y^2)}{\mathbb{E}(Y)^2} \leq \left(\frac{a_i^2}{(2a_i - a_{i-1})a_{i-1}} \right)^n = \left(\frac{1}{(2 - (a_{i-1}/a_i))(a_{i-1}/a_i)} \right)^n = \left(\frac{1}{(1 + 1/\sqrt{n})(1 - 1/\sqrt{n})} \right)^n = \left(\frac{1}{1 - 1/n} \right)^n = \left(1 + \frac{1}{n-1} \right)^n \leq 4.$$

\[\square \]

We recall well-known properties of logconcave functions.

Theorem 5. Marginals of logconcave functions are logconcave. Logconcave functions are closed under convolution.
The following theorem is commonly known as the Prékopa-Leindler inequality.

Theorem 6. Suppose \(f, g, h : \mathbb{R}^n \to \mathbb{R}_+ \) are integrable and that \(\forall x, y \in \mathbb{R}^n, \lambda \in [0, 1], h(\lambda x + (1 - \lambda)y) \geq f(x)^\lambda g(y)^{1-\lambda} \). Then

\[
\int_{\mathbb{R}^n} h(x) \, dx \geq \left(\int_{\mathbb{R}^n} f(x) \, dx \right)^\lambda \left(\int_{\mathbb{R}^n} g(x) \, dx \right)^{1-\lambda}.
\]

Proof. We prove the lemma by induction on the dimension \(n \). First consider \(n = 1 \). Let \(L_f(t) = \{ x : f(x) \geq t \} \) be a level set of \(f \). Since \(f \) is logconcave, we have that the level sets of \(f \) are convex. Then

\[
\lambda L_f(t) + (1 - \lambda)L_g(t) = \{ \lambda x + (1 - \lambda)y : f(x) \geq t, g(x) \geq t \} \subseteq L_h(t)
\]

since \(h(\lambda x + (1 - \lambda)y) \geq t \). Therefore, we have that \(\text{vol}(L_h(t)) \geq \lambda L_f(t) + (1 - \lambda)L_g(t) \) for all \(\lambda \in [0, 1] \) and

\[
\int_{\mathbb{R}} h(x) \, dx = \int_0^\infty \text{vol}(L_h(t)) \, dt \\
\geq \lambda \int_0^\infty L_f(t) \, dt + (1 - \lambda) \int_0^\infty L_g(t) \, dt \\
\geq \left(\int_{\mathbb{R}} f(x) \, dx \right)^\lambda \left(\int_{\mathbb{R}} g(x) \, dx \right)^{1-\lambda}.
\]

Now suppose the inequality is true for dimension \(n - 1 \). Define \(h(z, x) = h_z(x) \) for \(z \in \mathbb{R}, x \in \mathbb{R}^{n-1} \). (similarly for \(f, g \)). Fix a \(z \). Then the marginal distribution on the remaining \(n - 1 \) coordinates is logconcave. Then for \(z = \lambda z_1 + (1 - \lambda)z_2 \), by a similar argument to \(n = 1 \)

\[
h(\lambda z_1 + (1 - \lambda)z_2, \lambda x_1 + (1 - \lambda)x_2) \geq f(z_1, x_1)^\lambda g(z_2, x_2)^{1-\lambda},
\]

which implies that

\[
h_z(\lambda x_1 + (1 - \lambda)x_2) \geq f_z(1)^\lambda g_z(2)^{1-\lambda}.
\]

By induction, we have that

\[
\int_{\mathbb{R}^{n-1}} h_z(x) \, dx \geq \left(\int_{\mathbb{R}^{n-1}} f_z(x) \, dx \right)^\lambda \left(\int_{\mathbb{R}^{n-1}} g_z(x) \, dx \right)^{1-\lambda},
\]

and thus

\[
\int_{\mathbb{R}^n} h(x) \, dx \geq \left(\int_{\mathbb{R}^n} f(x) \, dx \right)^\lambda \left(\int_{\mathbb{R}^n} g(x) \, dx \right)^{1-\lambda}.
\]

We now give a slightly more detailed algorithm for integration, which will work for any logconcave function.

Integrate\((K, f, \varepsilon)\)
1. Set \(f_i(x) = f(x)^{a_i}, x \in K \).
2. Set \(a_0 = 0, a_m = 1 \), and \(a_{i+1} = a_i(1 - 1/\sqrt{i}) \) for \(i = 0, \ldots, m - 2 \).
3. For \(i = 1, \ldots, m \), compute \(w_i = \int f_i / \int f_{i-1} \).
4. Output \(W_1 \ldots W_m \cdot \int f_0 \).

We note that for optimizing a logconcave function \(f \), we can use a slightly different cooling schedule and instead of estimating integral ratios, we simply output the point \(x \) with the largest function value \(f(x) \) that we see. So, integrating and optimizing a general logconcave function are very closely related.
References

