Constrained and Unconstrained Optimal Control of Piecewise Deterministic Markov Processes

Oswaldo Costa, François Dufour, Alexey Piunovskiy

Universidade de Sao Paulo
Institut de Mathématiques de Bordeaux
INRIA Bordeaux Sud-Ouest
University of Liverpool
Outline

1. **Controlled piecewise deterministic Markov processes**
 - Introduction
 - Parameters of the model
 - Construction of the process
 - Admissible strategies

2. **Optimization problems**
 - Unconstrained and constrained problems
 - Assumptions

3. **Non explosion**

4. **The unconstrained problem and the dynamic programming approach**

5. **The constrained problem and the linear programming approach**
Introduction

Davis (80’s)

General class of non-diffusion dynamic stochastic hybrid models: deterministic trajectory punctuated by random jumps.

Applications

Engineering systems, biology, operations research, management science, economics, dependability and safety, . . .
Parameters of the model

- the state space: \(X \) open subset of \(\mathbb{R}^d \) (boundary \(\partial X \)).

- the flow: \(\phi(x, t) : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d \) satisfying
 \(\phi(x, t + s) = \phi(\phi(x, s), t) \) for all \(x \in \mathbb{R}^d \) and \((t, s) \in \mathbb{R}^2 \).

- active boundary:
 \(\Delta = \{ x \in \partial X : x = \phi(y, t) \text{ for some } y \in X \text{ and } t \in \mathbb{R}^*_+ \} \). For \(x \in \bar{X} = X \cup \Delta \),
 \[t^*(x) = \inf \{ t \in \mathbb{R}^+_0 : \phi(x, t) \in \Delta \}. \]

- \(A \) is the action space, assumed to be a Borel space.
 \(A^i \in \mathcal{B}(A) \) (respectively \(A^g \in \mathcal{B}(A) \)) is the set of impulsive (respectively gradual) actions satisfying \(A = A^i \cup A^g \) with \(A^i \cap A^g = \emptyset \).
Parameters of the model

- The set of feasible actions in state $x \in \overline{X}$ is $A(x) \subset A$. Let us introduce the following sets $K = K^i \cup K^g$ with

$$K^g = \{(x, a) \in X \times A^g : a \in A(x)\} \in \mathcal{B}(X \times A^g),$$

$$K^i = \{(x, a) \in \Delta \times A^i : a \in A(x)\} \in \mathcal{B}(\Delta \times A^i).$$

- The controlled jumps intensity λ which is a \mathbb{R}_+-valued measurable function defined on K^g.

- The stochastic kernel Q on X given K satisfying $Q(X \setminus \{x\}|x, a) = 1$ for any $(x, a) \in K^g$. It describes the state of the process after any jump.
Uncontrolled process

Definition of a PDMP

Parameters: flow ϕ, intensity of the jumps λ, transition kernel Q
Uncontrolled process

Definition of a PDMP
Parameters: flow ϕ, intensity of the jumps λ, transition kernel Q
Uncontrolled process

Definition of a PDMP

Parameters: flow ϕ, intensity of the jumps λ, *transition kernel* Q
Uncontrolled process

Definition of a PDMP
Parameters: flow ϕ, intensity of the jumps λ, transition kernel Q
Uncontrolled process

Definition of a PDMP

Parameters: flow ϕ, intensity of the jumps λ, **transition kernel Q**
Construction of the process

The canonical space $\Omega = \left(X \times (\mathbb{R}_+^* \times X)^\infty \right) \cup_{n=1}^{\infty} \Omega_n$ with $\Omega_n = X \times (\mathbb{R}_+^* \times X)^n \times (\{\infty\} \times \{x_\infty\})^\infty$.

Introduce the mappings $X_n : \Omega \rightarrow X_\infty = X \cup \{x_\infty\}$ by $X_n(\omega) = x_n$ and $\Theta_n : \Omega \rightarrow \mathbb{R}^*_+$ by $\Theta_n(\omega) = \theta_n$; $\Theta_0(\omega) = 0$ where

$$\omega = (x_0, \theta_1, x_1, \theta_2, x_2, \ldots) \in \Omega.$$

In addition $T_n(\omega) = \sum_{i=1}^{n} \Theta_i(\omega) = \sum_{i=1}^{n} \theta_i$ with $T_\infty(\omega) = \lim_{n \rightarrow \infty} T_n(\omega)$.

H_n is the set of path up to n and $H_n = (X_0, \Theta_1, X_1, \ldots, \Theta_n, X_n)$ is the n-term random history process.
Construction of the process

The random measure μ associated with $(\Theta_n, X_n)_{n \in \mathbb{N}}$ is a measure defined on $\mathbb{R}_+^* \times X$ by

$$\mu(dt, dx) = \sum_{n \geq 1} l\{T_n(\omega) < \infty\} \delta(T_n(\omega), X_n(\omega))(dt, dx).$$

The controlled process $\{\xi_t\}_{t \in \mathbb{R}_+}$:

$$\xi_t(\omega) = \begin{cases} \phi(X_n, t - T_n) & \text{if } T_n \leq t < T_{n+1} \text{ for } n \in \mathbb{N}; \\ x_\infty, & \text{if } T_\infty \leq t. \end{cases}$$

For $t \in \mathbb{R}_+$, define

$$\mathcal{F}_t = \sigma\{H_0\} \vee \sigma\{\mu([0, s] \times B) : s \leq t, B \in \mathcal{B}(X)\}.$$
Admissible strategies and conditional distribution

An admissible control strategy is a sequence $u = (\pi_n, \gamma_n)_{n \in \mathbb{N}}$ such that, for any $n \in \mathbb{N}$,

- π_n is a stochastic kernel on A^g given $H_n \times \mathbb{R}_+$ satisfying
 $$\pi_n(A(\phi(x_n, t))|h_n, t) = 1 \text{ for } h_n = (x_0, \theta_1, x_1, \ldots \theta_n, x_n) \in H_n \text{ and } t \in]0, t^*(x_n)[.$$

- γ_n is a stochastic kernel on A^i given H_n satisfying
 $$\gamma_n(A(\phi(x_n, t^*(x_n)))|h_n) = 1 \text{ for } h_n = (x_0, \theta_1, x_1, \ldots \theta_n, x_n).$$

The set of admissible control strategies is denoted by \mathcal{U}.
Admissible strategies and conditional distribution

When an admissible control strategy $u = (\pi_n, \gamma_n)_{n \in \mathbb{N}}$ is considered then π and γ denote the random processes with values in $\mathcal{P}(A^g)$ and $\mathcal{P}(A^i)$ correspondingly as

$$\pi(da|t) = \sum_{n \in \mathbb{N}} I\{T_n < t \leq T_{n+1}\} \pi_n(da|H_n, t - T_n)$$

and

$$\gamma(da|t) = \sum_{n \in \mathbb{N}} I\{T_n < t \leq T_{n+1}\} \gamma_n(da|H_n),$$

for $t \in \mathbb{R}^*_+$.
Admissible strategies and conditional distribution

For a strategy $u = (\pi_n, \gamma_n)_{n \in \mathbb{N}} \in \mathcal{U}$, the intensity of jumps

$$\lambda^u_n(h_n, t) = \int_{\mathcal{A}^g} \lambda(\phi(x_n, t), a)\pi_n(da|h_n, t),$$

and the rate of jumps

$$\Lambda^u_n(h_n, t) = \int_{[0, t]} \lambda^u_n(h_n, s)ds,$$

the distribution of the state after a (stochastic) jump

$$Q^g_n(u)(dx|h_n, t) = \frac{1}{\lambda^u_n(h_n, t)} \int_{\mathcal{A}^g} Q(dx|\phi(x_n, t), a)\lambda(\phi(x_n, t), a)\pi_n(da|h_n, t),$$

the distribution of the state after a (boundary) jump

$$Q^i_n(u)(dx|h_n) = \int_{\mathcal{A}^i} Q(dx|\phi(x_n, t^*(x_n)), a)\gamma_n(da|h_n).$$
Admissible strategies and conditional distribution

Introduce the stochastic kernel G_n on $\bar{\mathbb{R}}^*_+ \times X_{\infty}$ given H_n,

$$G_n(\Gamma|h_n) = \left[I\{x_n=x_\infty\} + e^{-\Lambda_n^u(h_n, +\infty)} I\{x_n\in X\} I\{t^*(x_n)=\infty\} \right] \delta(+\infty, x_\infty)(\Gamma)$$

$$+ I\{x_n\in X\} \left[\int_{\bar{\mathbb{R}}^*_+ \times X} l_\Gamma(t, x) \delta_{t^*(x_n)}(dt) Q_n^{i, u}(dx|h_n) e^{-\Lambda_n^u(h_n, t^*(x_n))} \right]$$

$$+ \int_{0, t^*(x_n)} \left[\times X \right] l_\Gamma(t, x) Q_n^{g, u}(dx|h_n, t) \lambda_n^u(h_n, t) e^{-\Lambda_n^u(h_n, t)} dt \right],$$

where $\Gamma \in \mathcal{B}(\bar{\mathbb{R}}^*_+ \times X_{\infty})$ and $h_n = (x_0, \theta_1, x_1, \ldots, \theta_n, x_n) \in H_n$.

G_n the joint distribution of the next sojourn time and state?
Admissible strategies and conditional distribution

Consider an admissible strategy $u \in \mathcal{U}$ and an initial state $x_0 \in \mathbf{X}$. There exists a probability $\mathbb{P}^u_{x_0}$ on (Ω, \mathcal{F}) such that the restriction of $\mathbb{P}^u_{x_0}$ to (Ω, \mathcal{F}_0) is given by

$$\mathbb{P}^u_{x_0}(\{x_0\} \times (\mathbb{R}^*_+ \times \mathbf{X}_\infty)^\infty) = 1$$

and the positive random measure ν defined on $\mathbb{R}^*_+ \times \mathbf{X}$ by

$$\nu(dt, dx) = \sum_{n \in \mathbb{N}} \frac{G_n(dt - T_n, dx|H_n)}{G_n([t - T_n, +\infty) \times \mathbf{X}_\infty|H_n)} I\{T_n < t \leq T_{n+1}\}$$

is the predictable projection of μ with respect to $\mathbb{P}^u_{x_0}$.

→ The conditional distribution of (Θ_{n+1}, X_{n+1}) given \mathcal{F}_{T_n} under $\mathbb{P}^u_{x_0}$ is determined by $G_n(\cdot|H_n)$.
Outline

1. Controlled piecewise deterministic Markov processes
 ▶ Introduction
 ▶ Parameters of the model
 ▶ Construction of the process
 ▶ Admissible strategies

2. Optimization problems
 ▶ Unconstrained and constrained problems
 ▶ Different classes of strategies
 ▶ Hypotheses

3. Non explosion

4. The unconstrained problem and the dynamic programming approach

5. The constrained problem and the linear programming approach
Unconstrained and constrained problems

Cost functions

- \((C^g_j)_{j \in \mathbb{N}_p}\) associated with a continuous action is a real-valued mapping defined on \(K^g\).
- \((C^i_j)_{j \in \mathbb{N}_p}\) associated with an impulsive action on the boundary \(\Delta\) is a real-valued mapping defined on \(K^i\).

The associated infinite-horizon discounted criteria corresponding to an admissible control strategy \(u \in \mathcal{U}\) are defined, for \(j \in \mathbb{N}_p\), by

\[
\mathcal{V}_j(u, x_0) = \mathbb{E}^u_{x_0} \left[\int_{0, +\infty} e^{-\alpha s} \int_{A(\xi_s)} C^g_j(\xi_s, a) \pi(da|s) ds \right]
\]

\[
+ \mathbb{E}^u_{x_0} \left[\int_{0, +\infty} e^{-\alpha s} l_{\xi_s \in \Delta} \int_{A(\xi_s^-)} C^i_j(\xi_s^-, a) \gamma(da|s) \mu(ds, X) \right]
\]

for any \(j \in \mathbb{N}_p\).
Unconstrained and constrained problems

- The optimization problem without constraint consists in minimizing the performance criterion

\[\inf_{u \in U} \mathcal{V}_0(u, x_0). \]

- The optimization problem with \(p \) constraints consists in minimizing the performance criterion

\[\inf_{u \in U} \mathcal{V}_0(u, x_0) \]

such that the constraint criteria

\[\mathcal{V}_j(u, x_0) \leq B_j \]

are satisfied for any \(j \in \mathbb{N}_p^* \), where \((B_j)_{j \in \mathbb{N}_p^*}\) are real numbers representing the constraint bounds.
Different classes of strategies

- **non-randomized stationary**, if $\pi_n(\cdot|h_n, t) = \delta \varphi^s(\phi(x_n, t))(\cdot)$ and $\gamma_n(\cdot|h_n) = \delta \varphi^s(\phi(x_n, t))(\cdot)$, where $\varphi^s : \overline{X} \to A$ is a measurable mapping satisfying $\varphi^s(y) \in A(y)$ for any $y \in \overline{X}$.

- **stationary**, if for some $(\pi, \gamma) \in \mathcal{P}^g \times \mathcal{P}^i$ the control strategy $u = (\pi_n, \gamma_n)_{n \in \mathbb{N}}$ is given by $\pi_n(da|h_n, t) = \pi(da|\phi(x_n, t))$ and $\gamma_n(db|h_n) = \gamma(db|\phi(x_n, t^*(x_n)))$.

- **feasible**, if $u \in \mathcal{U}$ and $\mathcal{V}_j(u, x_0) \leq B_j$, for $j \geq 1$.
Hypotheses

Assumption A. There are constants $K \geq 0, \varepsilon_1 > 0$ and $\varepsilon_2 \in [0, 1]$ such that

(A1) For any $(x, a) \in K^g$, $\lambda(x, a) \leq K$

(A2) For any $(z, b) \in K^i$, $Q(A_{\varepsilon_1}|z, b) \geq 1 - \varepsilon_2$, where

$$A_{\varepsilon_1} = \{x \in X : t^*(x) > \varepsilon_1\}.$$

Assumption B.

(B1) The set $A(y)$ is compact for every $y \in \overline{X}$.

(B2) The kernel Q is weakly continuous.

(B3) The function λ is continuous on K^g.

(B4) The flow ϕ is continuous on $\mathbb{R}_+ \times \mathbb{R}^p$.

(B5) The function t^* is continuous on \overline{X}.

Assumption C.

(C1) The multifunction Ψ^g from X to A defined by $\Psi(x) = A(x)$ is upper semicontinuous. The multifunction Ψ from Δ to A defined by $\Psi^i(z) = A(z)$ is upper semicontinuous.

(C2) The cost function C^g_0 (respectively, C^i_0) is bounded and lower semicontinuous on K^g (respectively, K^i).
Outline

1. Controlled piecewise deterministic Markov processes
 ▶ Introduction
 ▶ Parameters of the model
 ▶ Construction of the process
 ▶ Admissible strategies
2. Optimization problems
 ▶ Unconstrained and constrained problems
 ▶ Different classes of strategies
 ▶ Hypotheses
3. Non explosion
4. The unconstrained problem and the dynamic programming approach
5. The constrained problem and the linear programming approach
Lemma

Suppose Assumption A is satisfied. Then there exists \(M < \infty \) such that, for any control strategy \(u \in \mathcal{U} \) and for any \(x_0 \in X \)

\[
\mathbb{E}^u_{x_0} \left[\sum_{n \in \mathbb{N}^*} e^{-\alpha T_n} \right] \leq M \text{ and } \mathbb{P}^u_{x_0} (T_\infty < +\infty) = 0.
\]
Non-explosion

Elements of proof:

- For any control strategy u, $x_0 \in X$ we have for any $j \in \mathbb{N}$

\[
P^u_{x_0}(\Theta_{j+2} + \Theta_{j+1} > \varepsilon_1 | H_j) \geq e^{-2K\varepsilon_1}(1 - \varepsilon_2).
\]

- Now,

\[
\mathbb{E}^u_{x_0}\left[e^{-\alpha(\Theta_{j+1}+\Theta_{j+2})} | H_j \right]
\]

\[
\leq P^u_{x_0}(\Theta_{j+1} + \Theta_{j+2} \leq \varepsilon_1 | H_j)
+ e^{-\alpha\varepsilon_1}P^u_{x_0}(\Theta_{j+1} + \Theta_{j+2} > \varepsilon_1 | H_j)
\]

\[
= 1 + [e^{-\alpha\varepsilon_1} - 1]P^u_{x_0}(\Theta_{j+1} + \Theta_{j+2} > \varepsilon_1 | H_j)
\]

\[
\leq 1 + [e^{-\alpha\varepsilon_1} - 1][1 - \varepsilon_2]e^{-2K\varepsilon_1} = \kappa < 1.
\]
Elements of proof:

- For any $j \in \mathbb{N}^*$,

\[
\mathbb{E}_x^u \left[e^{-\alpha T_{2j+1}} \right] = \mathbb{E}_x^u \left[e^{-\alpha T_{2j-1}} \mathbb{E}_x^u \left[e^{-\alpha (\Theta_{2j+1} + \Theta_{2j+2})} | H_{2j-1} \right] \right] \\
\leq \kappa \mathbb{E}_x^u \left[e^{-\alpha T_{2j-1}} \right],
\]

and so

\[
\mathbb{E}_x^u \left[e^{-\alpha T_{2j+1}} \right] \leq \kappa^j \mathbb{E}_x^u \left[e^{-\alpha T_1} \right] \leq \kappa^j.
\]

Similarly,

\[
\mathbb{E}_x^u \left[e^{-\alpha T_{2j+2}} \right] \leq \kappa^j \mathbb{E}_x^u \left[e^{-\alpha T_2} \right] \leq \kappa^j.
\]

for any $j \in \mathbb{N}$.

- Therefore,

\[
\mathbb{E}_x^u \left[\sum_{n \in \mathbb{N}^*} e^{-\alpha T_n} \right] \leq \frac{2}{1 - \kappa}.
\]
Outline

1. Controlled piecewise deterministic Markov processes
 ▶ Introduction
 ▶ Parameters of the model
 ▶ Construction of the process
 ▶ Admissible strategies

2. Optimization problems
 ▶ Unconstrained and constrained problems
 ▶ Different classes of strategies
 ▶ Hypotheses

3. Non explosion

4. The unconstrained problem and the dynamic programming approach

5. The constrained problem and the linear programming approach
The unconstrained problem and the DP approach

Notation and preliminary results:

- ▶ $A \overline{X}$ is the set of functions $g \in \mathbb{B}(\overline{X})$ such that for any $x \in \overline{X}$, the function $g(\phi(x, \cdot))$ is absolutely continuous on $[0, t^*(x)] \cap \mathbb{R}_+$.

- ▶ Let $g \in A(\overline{X})$, there exists a real-valued measurable function λg defined on \overline{X} satisfying for any $t \in [0, t^*(x)]$

$$g(\phi(x, t)) = g(x) + \int_{[0,t]} \lambda g(\phi(x, s))ds.$$

- ▶ Let $R \in \mathcal{P}(X | Y)$. Then $Rf(y) \overset{\cdot}{=} \int_X f(x)R(dx|y)$ for any $y \in Y$ and measurable function f. For any measure η on $(Y, \mathcal{B}(Y))$, $\eta R(\cdot) \overset{\cdot}{=} \int_Y R(\cdot|y)\eta(dy)$.

- ▶ $q(dy|x, a) \overset{\cdot}{=} \lambda(x, a)[Q(dy|x, a) - \delta_x(dy)]$
Sufficient conditions for the existence of a solution for the HJB equation associated with the optimization problem.

Theorem

Suppose assumptions A, B and C hold. Then there exist \(W \in \mathbb{A}(X) \) *and* \(\mathcal{X} W \in \mathbb{B}(X) \) *satisfying*

\[
- \alpha W(x) + \mathcal{X} W(x) + \inf_{a \in A^g(x)} \left\{ C^g_0(x, a) + q W(x, a) \right\} = 0,
\]

for any \(x \in X \), *and*

\[
W(z) = \inf_{b \in A^i(z)} \left\{ C^i_0(z, b) + Q W(z, b) \right\},
\]

for any \(z \in \Delta \). *Moreover, for any* \(x \in X \)

\[
W(x) = \inf_{u \in \mathcal{U}} \mathcal{V}_0(u, x).
\]
Sufficient conditions for the existence of an optimal strategy.

Theorem

Suppose assumptions A, B and C hold. There exists a measurable mapping \(\hat{\varphi} : \overline{X} \rightarrow A \) such that \(\hat{\varphi}(y) \in A(y) \) for any \(y \in \overline{X} \) and satisfying

\[
C^g_0(x, \hat{\varphi}(x)) + qW(x, \hat{\varphi}(x)) = \inf_{a \in A(x)} \left\{ C^g_0(x, a) + qW(x, a) \right\}
\]

for any \(x \in \mathbf{X} \), and

\[
C^i_0(z, \hat{\varphi}(z)) + QW(z, \hat{\varphi}(z)) = \inf_{b \in A(z)} \left\{ C^i_0(z, b) + QW(z, b) \right\}.
\]

for any \(z \in \Delta \). Moreover, the stationary non-randomized strategy \(\hat{\varphi} \) is optimal.
Elements of proof:

- Define recursively \(\{W_i\}_{i \in \mathbb{N}} \) as

\[
W_{i+1}(y) = \mathcal{B} W_i(y),
\]

with \(W_0(y) = -K_A I_{A_1}(y) - (K_A + K_B) I_{A_1}(y) \) and

\[
\mathcal{B} V(y) = \int_{[0,t^*(y)[} e^{-(K+\alpha)t} \mathcal{R} V(\phi(y, t)) dt
\]

\[
+ e^{-(K+\alpha)t^*(y)} \mathcal{I} V(\phi(y, t^*(y)))
\]

where

\[
\mathcal{R} V(x) = \inf_{a \in A(x)} \left\{ C_0^g(x, a) + q V(x, a) + K V(x) \right\},
\]

and

\[
\mathcal{I} V(z) = \inf_{b \in A(z)} \left\{ C_0^i(z, b) + Q V(z, b) \right\}.
\]
\(W_i \) is lower semicontinuous and
\[
|W_i(y)| \leq K_A I_{A_{\varepsilon_1}}(y) + (K_A + K_B) I_{A_{\varepsilon_1}}(y).
\]

\(\mathcal{B} \) is monotone \((V_1 \leq V_2 \Rightarrow \mathcal{B} V_1 \leq \mathcal{B} V_2)\), \(\{ W_i \}_{i \in \mathbb{N}} \) is increasing and \(W_i \to W \) and \(W \) is bounded and lower semicontinuous.

\[
\lim_{i \to \infty} \mathbb{R} W_i(x) = \mathbb{R} W(x), \text{ for any } x \in X
\]
\[
\lim_{i \to \infty} \mathbb{I} W_i(z) = \mathbb{I} W(z), \text{ for any } z \in \Delta.
\]
The unconstrained problem and the DP approach

By using the bounded convergence Theorem,

\[W(y) = \mathcal{B}W(y) \]

\[= \int_{[0,t^*(y)]} e^{-(K+\alpha)t} \mathcal{K}W(\phi(y, t)) \, dt \]

\[+ e^{-(K+\alpha)t^*(y)} \mathcal{T}W(\phi(y, t^*(y))), \]

where \(y \in \bar{X} \).

Then \(W \in A(\bar{X}) \) and there exists \(\mathcal{K}W \in \mathcal{B}(X) \)

\[-\alpha W(x) + \mathcal{K}W(x) + \inf_{a \in A^g(x)} \left\{ C^g_0(x, a) + qW(x, a) \right\} = 0, \]

for any \(x \in X \), and

\[W(z) = \inf_{b \in A^i(z)} \left\{ C^i_0(z, b) + QW(z, b) \right\}, \]

for any \(z \in \Delta \).
1. Controlled piecewise deterministic Markov processes
 ▶ Introduction
 ▶ Parameters of the model
 ▶ Construction of the process
 ▶ Admissible strategies
2. Optimization problems
 ▶ Unconstrained and constrained problems
 ▶ Different classes of strategies
 ▶ Hypotheses
3. Non explosion
4. The unconstrained problem and the dynamic programming approach
5. The constrained problem and the linear programming approach
Occupation measure

For any admissible control strategy $u \in \mathcal{U}$, the occupation measure $\eta_u \in \mathcal{M}(\mathcal{K})$ associated with u is defined as follows

$$
\eta_u(\Gamma) = \mathbb{E}^u_{x_0} \left[\int_{\Gamma \cap \mathcal{K}^g} \int_{0,\infty} e^{-\alpha s} \delta_{\xi_s}(dx) \pi(da|s) ds \right]
$$

$$
+ \mathbb{E}^u_{x_0} \left[\int_{\Gamma \cap \mathcal{K}^i} \sum_{n \in \mathbb{N}^*} e^{-\alpha T_n} \delta_{\xi_{T_n}}(dz) \gamma(db|T_n-) \right].
$$

for any $\Gamma \in \mathcal{B}(\mathcal{K})$.
Linear programming approach

The infinite-horizon discounted criteria can be rewritten as

\[
V_j(u, x_0) = \mathbb{E}_x^u \left[\int_{0, \infty} e^{-\alpha s} \int_{A(\xi_s)} C^g_j(\xi_s, a) \pi(da|s) ds \right]
\]

\[
+ \mathbb{E}_x^u \left[\int_{0, \infty} e^{-\alpha s} \mathbb{1}_{\{\xi_s \in \Delta\}} \int_{A(\xi_s)} C^i_j(\xi_s, a) \gamma(da|s) \mu(ds, \mathbf{X}) \right]
\]

\[
= \eta^g_u(C^g_j) + \eta^i_u(C^i_j)
\]

where the restriction of \(\eta_u \) to \(K^g \) (resp. \(K^i \)) is denoted by \(\eta^g_u \) (resp. \(\eta^i_u \)).
Admissible measure

A finite measure $\eta \in \mathcal{M}(K)$ is called admissible if, for any $(W, X W) \in \mathcal{A}(X) \times \mathcal{B}(X)$, the following equality holds

$$
\int_X \left(\alpha W(x) - X W(x) \right) \hat{\eta}^g(dx) + \int_{\Delta} W(z) \hat{\eta}^i(dz) = W(x_0) + \int_{K^g} qW(x, a) \eta^g(dx, da) + \int_{K^i} QW(z, b) \eta^i(dz, db).
$$

with $\hat{\eta}^g$ (resp. $\hat{\eta}^i$) denotes the marginal of η^g (resp. η^i) w.r.t. to X.
Occupation and admissible measures

The next important result shows the link between the set of admissible measures and the set of occupation measures.

Theorem
Suppose Assumption A is satisfied. Then the following assertions hold.

i) For any control strategy $u \in \mathcal{U}$, the occupation measure η_u is admissible.

ii) Suppose that the measure η is admissible. Then there exist stochastic kernels $\pi \in \mathcal{P}^g$ and $\gamma \in \mathcal{P}^i$ for which the stationary control strategy $u = (\pi, \gamma) \in \mathcal{U}_s$ satisfies $\eta = \eta_u$.
The constrained linear program, labeled \mathbb{LP}, is defined as

$$\inf_{(\eta^g,\eta^i) \in \mathbb{M}} \eta^g(C_0^g) + \eta^i(C_0^i)$$

where \mathbb{M} is the set of measures (η^g,η^i) in $\mathcal{M}(K^i) \times \mathcal{M}(K^g)$ such that $\eta^g + \eta^i$ is admissible and satisfies

$$\eta^g(C_j^g) + \eta^i(C_j^i) \leq B_j.$$
Linear programming approach

Theorem
Suppose Assumption A holds and the cost functions C^g_j and C^i_j are bounded from below for any $j \in \mathbb{N}_p$. Then the values of the constrained control problem and the linear program \mathbb{LP} are equivalent:

$$\inf_{\eta^g, \eta^i \in \mathcal{M}} \eta^g(C^g_0) + \eta^i(C^i_0) = \inf_{u \in \mathcal{U}^f} \mathcal{V}_0(u, x_0).$$
Linear programming approach

Theorem

Suppose Assumptions A, B and (C1) are satisfied. Assume the cost functions \(C_g^j \) (resp. \(C_i^j \)) are bounded from below and lower semicontinuous on \(K_g^j \) (resp. \(K_i^j \)) for any \(j \in \mathbb{N}_p \).

If the set of feasible strategies is non empty then the \(\text{LP} \) is solvable and there exists a stationary feasible strategy \(u^* \) satisfying

\[
\eta_{u^*}^g(C_0^g) + \eta_{u^*}^i(C_0^i) = \inf_{(\eta^g, \eta^i) \in M} \eta^g(C_0^g) + \eta^i(C_0^i) = \inf_{u \in U^f} \mathcal{V}_0(u, x_0) = \mathcal{V}_0(u^*, x_0).
\]